Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Blood oxygen level dependent (BOLD) brain activity, measured using functional MRI (fMRI), is dependent on the echo time (TE) and the reversible spin-spin relaxation time constant ( T2*) that describes the decay of transverse magnetization. Use of the optimal TE during fMRI experiments allows maximal sensitivity to BOLD to be achieved. Reports that T2* values are longer in infants (due to higher water concentrations and lower lipid content) have led to the use of longer TEs during infant fMRI experiments; however, the optimal TE has not been established. METHODS: In this study, acute experimental mildly noxious stimuli were applied to the heel in 12 term infants (mean gestational age = 40 weeks, mean postnatal age = 3 days); and the percentage change in BOLD activity was calculated across a range of TEs, from 30 to 70 ms, at 3 Tesla. In addition, T2* maps of the whole brain were collected in seven infants. RESULTS: The maximal change in BOLD occurred at a TE of 52 ms, and the average T2* across the whole brain was 99 ms. CONCLUSION: A TE of approximately 50 ms is recommended for use in 3T fMRI investigations in term infants. Magn Reson Med 78:625-631, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

Original publication

DOI

10.1002/mrm.26455

Type

Journal article

Journal

Magn Reson Med

Publication Date

08/2017

Volume

78

Pages

625 - 631

Keywords

BOLD, T  2*, brain, echo time, imaging, infants, pain, Brain, Female, Humans, Infant, Infant, Newborn, Magnetic Resonance Imaging, Male, Physical Stimulation