Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Attachment to the plasma membrane by linkage to a glycosylphosphatidylinositol (GPI) anchor is a mode of protein expression highly conserved from protozoa to mammals. As a clinical entity, deficiency of GPI has been recognized as paroxysmal nocturnal hemoglobinuria, an acquired clonal disorder associated with somatic mutations of the X-linked PIGA gene in hematopoietic cells. We have identified a novel disease characterized by a propensity to venous thrombosis and seizures in which deficiency of GPI is inherited in an autosomal recessive manner. In two unrelated kindreds, a point mutation (c --> g) at position -270 from the start codon of PIGM, a mannosyltransferase-encoding gene, disrupts binding of the transcription factor Sp1 to its cognate promoter motif. This mutation substantially reduces transcription of PIGM and blocks mannosylation of GPI, leading to partial but severe deficiency of GPI. These findings indicate that biosynthesis of GPI is essential to maintain homeostasis of blood coagulation and neurological function.

Original publication

DOI

10.1038/nm1410

Type

Journal article

Journal

Nat Med

Publication Date

07/2006

Volume

12

Pages

846 - 851

Keywords

Amino Acid Sequence, Base Sequence, Female, Genes, Recessive, Glycosylphosphatidylinositols, Hemoglobinuria, Humans, Male, Mannosyltransferases, Molecular Sequence Data, Mutation, Pedigree, Promoter Regions, Genetic, Seizures, Thrombosis