Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

During acute graft-versus-host disease (aGVHD) in mice, autoreactive T cells can be generated de novo in the host thymus implying an impairment in self-tolerance induction. As a possible mechanism, we have previously reported that mature medullary thymic epithelial cells (mTEC(high)) expressing the autoimmune regulator are targets of donor T-cell alloimmunity during aGVHD. A decline in mTEC(high) cell pool size, which purges individual tissue-restricted peripheral self-antigens (TRA) from the total thymic ectopic TRA repertoire, weakens the platform for central tolerance induction. Here we provide evidence in a transgenic mouse system using ovalbumin (OVA) as a model surrogate TRA that the de novo production of OVA-specific CD4(+) T cells during acute GVHD is a direct consequence of impaired thymic ectopic OVA expression in mTEC(high) cells. Our data, therefore, indicate that a functional compromise of the medullary mTEC(high) compartment may link alloimmunity to the development of autoimmunity during chronic GVHD.

Original publication




Journal article



Publication Date





2720 - 2723


Animals, Autoantigens, Autoimmunity, CD4-Positive T-Lymphocytes, Female, Graft vs Host Disease, Mice, Mice, Inbred C57BL, Mice, Transgenic, Ovalbumin, Self Tolerance, Thymus Gland