Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

More than 235,000 children/year in the UK receive general anaesthesia, but it is unknown whether nociceptive stimuli alter cortical brain activity in anaesthetised children. Time-locked electroencephalogram (EEG) responses to experimental tactile stimuli, experimental noxious stimuli, and clinically required cannulation were examined in 51 children (ages 1-12 years) under sevoflurane monoanaesthesia. Based on a pilot study (n=12), we hypothesised that noxious stimulation in children receiving sevoflurane monoanaesthesia would evoke an increase in delta activity. This was tested in an independent sample of children (n=39), where a subset (n=11) had topical local anaesthetic applied prior to stimulation. A novel method of time-locking the stimuli to the EEG recording was developed using an event detection interface and high-speed camera. Clinical cannulation evoked a significant increase (34.2 ± 8.3%) in delta activity (P=0.042), without concomitant changes in heart rate or reflex withdrawal, which was not observed when local anaesthetic was applied (P=0.30). Experimental tactile (P=0.012) and noxious (P=0.0099) stimulation also evoked significant increases in delta activity, but the magnitude of the response was graded with stimulus intensity, with the greatest increase evoked by cannulation. We demonstrate that experimental and clinically essential noxious procedures, undertaken in anaesthetised children, alter the pattern of EEG activity, that this response can be inhibited by local anaesthetic, and that this measure is more sensitive than other physiological indicators of nociception. This technique provides the possibility that sensitivity to noxious stimuli during anaesthesia could be investigated in other clinical populations.

Original publication




Journal article



Publication Date





2368 - 2376


Anaesthetics, EEG, Paediatrics, Anesthesia, General, Brain, Child, Child, Preschool, Delta Rhythm, Electrocardiography, Electroencephalography, Electromyography, Female, Humans, Infant, Male, Pain, Physical Stimulation