Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

HDAC inhibitors (HDACi) increase transcription of some genes through histone hyperacetylation. To test the hypothesis that HDACi-mediated enhanced transcription might be of therapeutic value for inherited enzyme deficiency disorders, we focused on the glycolytic and pentose phosphate pathways (GPPPs). We show that among the 16 genes of the GPPPs, HDACi selectively enhance transcription of glucose 6-phosphate dehydrogenase (G6PD). This requires enhanced recruitment of the generic transcription factor Sp1, with commensurate recruitment of histone acetyltransferases and deacetylases, increased histone acetylation, and polymerase II recruitment to G6PD. These G6PD-selective transcriptional and epigenetic events result in increased G6PD transcription and ultimately restored enzymatic activity in B cells and erythroid precursor cells from patients with G6PD deficiency, a disorder associated with acute or chronic hemolytic anemia. Therefore, restoration of enzymatic activity in G6PD-deficient nucleated cells is feasible through modulation of G6PD transcription. Our findings also suggest that clinical consequences of pathogenic missense mutations in proteins with enzymatic function can be overcome in some cases by enhancement of the transcriptional output of the affected gene.

Original publication




Journal article



Publication Date





134 - 141


Cells, Cultured, Chromatin Immunoprecipitation, Epigenesis, Genetic, Glucosephosphate Dehydrogenase, Glucosephosphate Dehydrogenase Deficiency, Histone Deacetylase Inhibitors, Humans, Real-Time Polymerase Chain Reaction, Transcription, Genetic