Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The thymus provides multiple microenvironments that are essential for the development and repertoire selection of T lymphocytes. The thymic cortex induces the generation and positive selection of T lymphocytes, whereas the thymic medulla establishes self-tolerance among the positively selected T lymphocytes. Cortical thymic epithelial cells (cTECs) and medullary TECs (mTECs) constitute the major stromal cells that structurally form and functionally characterize the cortex and the medulla, respectively. cTECs and mTECs are both derived from the endodermal epithelium of the third pharyngeal pouch. However, the molecular and cellular characteristics of the progenitor cells for the distinct TEC lineages are unclear. Here we report the preparation and characterization of mice that express the recombinase Cre instead of β5t, a proteasome subunit that is abundant in cTECs and not detected in other cell types, including mTECs. By crossing β5t-Cre knock-in mice with loxP-dependent GFP reporter mice, we found that β5t-Cre-mediated recombination occurs specifically in TECs but not in any other cell types in the mouse. Surprisingly, in addition to cTECs, β5t-Cre-loxP-mediated GFP expression was detected in almost all mTECs. These results indicate that the majority of mTECs, including autoimmune regulator-expressing mTECs, are derived from β5t-expressing progenitor cells.

Original publication

DOI

10.1073/pnas.1301799110

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

11/06/2013

Volume

110

Pages

9885 - 9890

Keywords

Animals, Epithelial Cells, Flow Cytometry, Green Fluorescent Proteins, Integrases, Male, Mice, Mice, 129 Strain, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Microscopy, Confocal, Proteasome Endopeptidase Complex, Stem Cells, T-Lymphocytes, Thymus Gland, Time Factors, Transcription Factors