Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

3'-deoxy-3',4'-didehydro-cytidine (ddhC) is a recently discovered host biomarker for viral infections, though its temporal kinetics remain unclear. This study tests the hypothesis that ddhC is an acute phase reactant, rising shortly after viral infection and subsequently falling to baseline. We leveraged the precise monitoring facilitated by human challenge studies to investigate healthy participants inoculated with SARS-CoV-2, influenza A virus (H3N2), or respiratory syncytial virus (RSV). Using targeted liquid chromatography-tandem mass spectrometry, we quantified ddhC concentrations in serial plasma samples collected pre- and post-inoculation. In SARS-CoV-2 and H3N2 influenza A virus infection, but not RSV, ddhC levels peaked at 3-7 days post inoculation and declined to baseline by days 10-14. This pattern was also observed in asymptomatic or paucisymptomatic participants. A comparison of ddhC concentrations with matched timepoint whole blood gene expression revealed a correlation with interferon-related genes, including viperin and CMPK2-enzymes implicated in its upstream biosynthesis. Our results suggest that ddhC is a biomarker of the acute phase of viral infection, with potential to guide early interventions that reduce antimicrobial resistance and strengthen pandemic preparedness. Future work should explore ddhC dynamics in natural and experimental infections across varying severities and assess its utility in diverse populations and healthcare settings.

Original publication

DOI

10.1038/s44298-025-00132-x

Type

Journal

Npj Viruses

Publication Date

20/06/2025

Volume

3