Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: Over 30 international studies are exploring newborn sequencing (NBSeq) to expand the range of genetic disorders included in newborn screening. Substantial variability in gene selection across programs exists, highlighting the need for a systematic approach to prioritize genes. METHODS: We assembled a data set comprising 25 characteristics about each of the 4390 genes included in 27 NBSeq programs. We used regression analysis to identify several predictors of inclusion and developed a machine learning model to rank genes for public health consideration. RESULTS: Among 27 NBSeq programs, the number of genes analyzed ranged from 134 to 4299, with only 74 (1.7%) genes included by over 80% of programs. The most significant associations with gene inclusion across programs were presence on the US Recommended Uniform Screening Panel (inclusion increase of 74.7%, CI: 71.0%-78.4%), robust evidence on the natural history (29.5%, CI: 24.6%-34.4%), and treatment efficacy (17.0%, CI: 12.3%-21.7%) of the associated genetic disease. A boosted trees machine learning model using 13 predictors achieved high accuracy in predicting gene inclusion across programs (area under the curve = 0.915, R2 = 84%). CONCLUSION: The machine learning model developed here provides a ranked list of genes that can adapt to emerging evidence and regional needs, enabling more consistent and informed gene selection in NBSeq initiatives.

Original publication

DOI

10.1016/j.gim.2025.101443

Type

Journal

Genet Med

Publication Date

09/05/2025

Volume

27

Keywords

Gene selection, Gene-disorder associations, Genomic sequencing, Machine learning, Newborn screening