Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The nuclear envelope (NE), a protective membrane bordering the nucleus, is composed of highly specialized proteins that are indispensable for normal cellular activity. Lamina-associated polypeptide 1 (LAP1) is a NE protein whose functions are just beginning to be unveiled. The fact that mutations causing LAP1 deficiency are extremely rare and pathogenic is indicative of its paramount importance to preserving human health, anticipating that LAP1 might have a multifaceted role in the cell. Mapping the LAP1 protein interactome is, thus, imperative to achieve an integrated view of its potential biological properties. To this end, we employed in silico- and mass spectrometry-based approaches to identify candidate LAP1-interacting proteins, whose functional attributes were subsequently characterized using bioinformatics tools. Our results reveal the complex and multifunctional network of protein-protein interactions associated to LAP1, evidencing a strong interconnection between LAP1 and cellular processes as diverse as chromatin and cytoskeleton organization, DNA repair, RNA processing and translation, as well as protein biogenesis and turnover, among others. Novel interactions between LAP1 and DNA repair proteins were additionally validated, strengthening the previously proposed involvement of LAP1 in the maintenance of genomic stability. Overall, this study reaffirms the biological relevance of LAP1 and the need to deepen our knowledge about this NE protein, providing new insights about its potential functional partners that will help guiding future research towards a mechanistic understanding of LAP1's functioning.

Original publication

DOI

10.3390/ijms252413235

Type

Journal

Int J Mol Sci

Publication Date

10/12/2024

Volume

25

Keywords

DNA repair, bioinformatics, heterochromatin assembly, protein–protein interactions, proteomics, proteostasis, Humans, Protein Interaction Maps, Membrane Proteins, Nuclear Envelope, Protein Binding, Protein Interaction Mapping, Computational Biology, DNA Repair, HSC70 Heat-Shock Proteins