Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

One proposed HIV vaccine strategy is to induce Gag-specific CD8(+) T-cell responses that can corner the virus, through fitness cost of viral escape and unavailability of compensatory mutations. We show here that the most variable capsid residues principally comprise escape mutants driven by protective alleles HLA-B*57, -5801, and -8101 and covarying HLA-independent polymorphisms that arise in conjunction with these escape mutations. These covarying polymorphisms are potentially compensatory and are concentrated around three tropism-determining loops of p24, suggesting structural interdependencies. Our results demonstrate complex patterns of adaptation of HIV under immune selection pressure, the understanding of which should aid vaccine design.

Original publication




Journal article


J Virol

Publication Date





1384 - 1390


Amino Acid Substitution, CD8-Positive T-Lymphocytes, DNA Mutational Analysis, HIV Core Protein p24, HIV Infections, HIV-1, HLA Antigens, Humans, Models, Molecular, Mutation, Missense, Polymorphism, Genetic