Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The agouti viable (Avy) locus is considered a model to understand how retroelements function as controlling elements in mammals. Epigenetic factors, principally CpG methylation, are widely held to play a dominant regulatory role in controlling the locus' activity. The purpose of this study was to examine its behavior in ES cells and determine if this locus could be exploited for use in screen-based investigations. We have derived multiple Avy ES cell lines from the C57BL/6 strain and generated a cell line carrying a GFP-reporter gene (Avy/AGFP). Use of the DNA demethylating drug 5-azacitidine on various ES cell lines does not induce either agouti or GFP expression. Methylation analysis reveals that although most lines display normal methylation at IAP elements in general, the Avy IAP element is essentially unmethylated. In addition, we find that different repeat compartments are epigenetically unstable in a number of derived cell lines.

Original publication

DOI

10.1371/journal.pone.0107355

Type

Journal

PLoS One

Publication Date

2014

Volume

9

Keywords

Agouti Signaling Protein, Animals, Cell Line, Cells, Cultured, DNA Methylation, Down-Regulation, Embryo, Mammalian, Embryonic Stem Cells, Female, Gene Expression Regulation, Developmental, Genes, Intracisternal A-Particle, Male, Mice, Mice, Inbred C57BL, Regulatory Sequences, Nucleic Acid