Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

RNA is an emerging platform for drug delivery, but the susceptibility of RNA to nuclease degradation remains a major barrier to its implementation in vivo. Here, we engineered flaviviral Xrn1-resistant RNA (xrRNA) motifs to host small interfering RNA (siRNA) duplexes. The xrRNA-siRNA molecules self-assemble in vitro, resist degradation by the conserved eukaryotic 5' to 3' exoribonuclease Xrn1, and trigger gene silencing in 293T cells. The resistance of the molecules to Xrn1 does not translate to stability in blood serum. Nevertheless, our results demonstrate that flavivirus-derived xrRNA motifs can confer Xrn1 resistance on a model therapeutic payload and set the stage for further investigations into using the motifs as building blocks in RNA nanotechnology.

Original publication

DOI

10.1002/cbic.202100434

Type

Journal

Chembiochem

Publication Date

03/11/2021

Volume

22

Pages

3099 - 3106

Keywords

RNA nanotechnology, exonuclease-resistant RNA, self-assembly, small interfering RNA, Exoribonucleases, Flavivirus, Gene Silencing, HEK293 Cells, Humans, RNA, Small Interfering, RNA, Viral