Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The source–sink paradigm predicts that populations in poorer-quality habitats (‘sinks') persist due to continued immigration from more-productive areas (‘sources'). However, this categorisation of populations assumes that habitat quality is fixed through time. Globally, we are in an era of wide-spread habitat degradation, and consequently there is a pressing need to examine dispersal dynamics in relation to local population change. We used an integrated population model to quantify immigration dynamics in a long-lived colonial seabird, the black-legged kittiwake Rissa tridactyla, that is classified as globally ‘Vulnerable'. We then used a transient life table response experiment to evaluate the contribution of temporal variation in vital rates, immigration rates and population structure to realised population growth. Finally, we used a simulation analysis to examine the importance of immigration to population dynamics. We show that the contribution of immigration changed as the population declined. This study demonstrates that immigration is unlikely to maintain vulnerable sink populations indefinitely, emphasising the need for temporal analyses of dispersal to identify shifts that may have dramatic consequences for population viability.

Original publication




Journal article



Publication Date