Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Evidence from post-mortem studies and in vivo imaging studies suggests there may be reduced N-methyl-d-aspartate receptor (NMDAR) levels in the hippocampus in patients with schizophrenia. Other studies have reported increased glutamate in striatum in schizophrenia patients. It has been hypothesised that NMDAR hypofunction leads to the disinhibition of glutamatergic signalling; however, this has not been tested in vivo. METHODS: In this study, we investigated the relationship between hippocampal NMDAR and striatal glutamate using simultaneous positron emission tomography-magnetic resonance (PET-MR) imaging. We recruited 40 volunteers to this cross-sectional study; 21 patients with schizophrenia, all in their first episode of illness, and 19 healthy controls. We measured hippocampal NMDAR availability using the PET ligand [18F]GE179. This was indexed relative to whole brain as the distribution volume ratio (DVR). Striatal glutamatergic indices (glutamate and Glx) were acquired simultaneously, using combined PET-MR proton magnetic resonance spectroscopy (1H-MRS). RESULTS: A total of 33 individuals (15 healthy controls, 18 patients) were included in the analyses (mean (SD) age of controls, 27.31 (4.68) years; mean (SD) age of patients, 24.75 (4.33), 27 male and 6 female). We found an inverse relationship between hippocampal DVR and striatal glutamate levels in people with first-episode psychosis (rho = -0.74, p 

Original publication




Journal article


J Psychopharmacol

Publication Date





1051 - 1060


Glutamate, NMDAR, schizophrenia, Adult, Brain, Cross-Sectional Studies, Female, Glutamic Acid, Humans, Ligands, Magnetic Resonance Spectroscopy, Male, Neuroimaging, Positron-Emission Tomography, Psychotic Disorders, Receptors, N-Methyl-D-Aspartate