Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Gene therapy for spinal muscular atrophy (SMA) represents a significant milestone in the treatment of neurologic diseases. SMA is a neurodegenerative disease that results in motor neuron loss because of mutations of the survival motor neuron 1 gene, which directs survival motor neuron (SMN) protein production. Onasemnogene abeparvovec, a one-time gene replacement therapy, delivers a functional transgene to restore SMN protein expression. Onasemnogene abeparvovec has demonstrated improved survival and motor milestone achievements for presymptomatic infants and patients with SMA type 1. AREAS COVERED: This expert review describes the current state of gene therapy for SMA, reviews the mechanism of and clinical experience with onasemnogene abeparvovec, explains future efforts to expand applications of gene therapy for SMA, and provides context for developing gene therapy for other conditions. EXPERT OPINION: Onasemnogene abeparvovec has demonstrated efficacy in clinical trials and, because of this, is a valuable treatment option for patients with symptomatic infantile SMA and those identified by newborn screening. Gene therapy is still in its infancy, and challenges and uncertainties associated with transgene delivery must be addressed. With ongoing development of vector technology, more specific tissue tropism, reduced "off-target" effects, and an enhanced safety profile will continue to evolve.

Original publication




Journal article


Expert Opin Biol Ther

Publication Date



adeno-associated viral vector, disease-modifying treatments, gene therapy, motor milestones, neurodegenerative disorders, newborn screening, onasemnogene abeparvovec, spinal muscular atrophy, survival motor neuron, vector genomes