Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Single-stranded phosphorothioate (PS) oligonucleotide drugs have shown potential for the treatment of several rare diseases. However, a barrier to their widespread use is that they exhibit activity in only a narrow range of tissues. One way to circumvent this constraint is to conjugate them to cationic cell-penetrating peptides (CPPs). Although there are several examples of morpholino and peptide nucleic acids conjugated with CPPs, there are noticeably few examples of PS oligonucleotide-CPP conjugates. This is surprising given that PS oligonucleotides presently represent the largest class of approved RNA-based drugs, including Nusinersen, that bears the 2'-O-methoxyethyl (MOE)-chemistry. In this work, we report a method for in-solution conjugation of cationic, hydrophobic peptides or human serum albumin to a 22-nucleotide MOE-PS oligonucleotide. Conjugates were obtained in high yields and purities. Our findings pave the way for their large-scale synthesis and testing in vivo.

Original publication

DOI

10.1002/cmdc.202100388

Type

Journal article

Journal

ChemMedChem

Publication Date

19/11/2021

Volume

16

Pages

3391 - 3395

Keywords

albumin conjugation, bioconjugation, cell-penetrating peptides, mass spectrometry, oligonucleotides