Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Due to their shared genetic history, antibodies from the same clonotype often bind to the same epitope. This knowledge is used in immune repertoire mining, where known binders are used to search bulk sequencing repertoires to identify new binders. However, current computational methods cannot identify epitope convergence between antibodies from different clonotypes, limiting the sequence diversity of antigen-specific antibodies that can be identified. We describe how the antibody binding site, the paratope, can be used to cluster antibodies with common antigen reactivity from different clonotypes. Our method, paratyping, uses the predicted paratope to identify these novel cross clonotype matches. We experimentally validated our predictions on a pertussis toxoid dataset. Our results show that even the simplest abstraction of the antibody binding site, using only the length of the loops involved and predicted binding residues, is sufficient to group antigen-specific antibodies and provide additional information to conventional clonotype analysis. Abbreviations: BCR: B-cell receptor; CDR: complementarity-determining region; PTx: pertussis toxoid.

Original publication

DOI

10.1080/19420862.2020.1869406

Type

Journal article

Journal

MAbs

Publication Date

01/2021

Volume

13

Keywords

Antibody discovery, BCR-seq, computational, immune repertoire mining, paired sequencing, paratope, pertussis, pertussis toxoid, transgenic mouse