Search results
Found 7019 matches for
Raising AWaRe-ness of antimicrobial stewardship challenges in pediatric emergency care: results from the PERFORM study assessing consistency and appropriateness of antibiotic prescribing across Europe.
OBJECTIVES: Optimization of antimicrobial stewardship (AMS) is key to tackling antimicrobial resistance (AMR), which is exacerbated by over-prescription of antibiotics in pediatric Emergency Departments (EDs). We described patterns of empiric antibiotic use in European EDs, and characterized appropriateness and consistency of prescribing. METHODS: Between August 2016 and December 2019 febrile children attending the ED in nine European countries with suspected infection were recruited into the PERFORM (Personalised Risk assessment in Febrile illness to Optimise Real-life Management) study. Empiric systemic antibiotic use was determined in view of assigned final 'bacterial' or 'viral' phenotype. Antibiotics were classified according to WHO AWaRe. RESULTS: Of 2130 febrile episodes (excluding children with non-bacterial/non-viral phenotypes), 1549 (72.7%) were assigned a 'bacterial' and 581 (27.3%) a 'viral' phenotype. A total of 1318/1549 (85.1%) episodes with a 'bacterial' and 269/581 (46.3%) with a 'viral' phenotype received empiric systemic antibiotics (first two days of admission). Of those, the majority (87.8% in 'bacterial' and 87.0% in 'viral' group) received parenteral antibiotics. The top three antibiotics prescribed were third-generation cephalosporins, penicillins and penicillin/beta-lactamase inhibitor combinations. Of those treated with empiric systemic antibiotics in the 'viral' group 216/269 (80.3%) received ≥ one Watch antibiotic. CONCLUSIONS: Differentiating bacterial from viral etiology in febrile illness on initial ED presentation remains challenging, resulting in a substantial over-prescription of antibiotics. A significant proportion of patients with a 'viral' phenotype received systemic antibiotics, predominantly classified as WHO Watch. Rapid and accurate point-of-care tests in the ED differentiating between bacterial and viral etiology, could significantly improve AMS.
Efficient Synthesis of 2'-O-Methoxyethyl Oligonucleotide-Cationic Peptide Conjugates.
Single-stranded phosphorothioate (PS) oligonucleotide drugs have shown potential for the treatment of several rare diseases. However, a barrier to their widespread use is that they exhibit activity in only a narrow range of tissues. One way to circumvent this constraint is to conjugate them to cationic cell-penetrating peptides (CPPs). Although there are several examples of morpholino and peptide nucleic acids conjugated with CPPs, there are noticeably few examples of PS oligonucleotide-CPP conjugates. This is surprising given that PS oligonucleotides presently represent the largest class of approved RNA-based drugs, including Nusinersen, that bears the 2'-O-methoxyethyl (MOE)-chemistry. In this work, we report a method for in-solution conjugation of cationic, hydrophobic peptides or human serum albumin to a 22-nucleotide MOE-PS oligonucleotide. Conjugates were obtained in high yields and purities. Our findings pave the way for their large-scale synthesis and testing in vivo.
Innovative developments and emerging technologies in RNA therapeutics.
RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.
Prohead RNA: a noncoding viral RNA of novel structure and function.
Prohead RNA (pRNA) is an essential component of the powerful Φ29-like bacteriophage DNA packaging motor. However, the specific role of this unique RNA in the Φ29 packaging motor remains unknown. This review examines pRNA as a noncoding RNA of novel structure and function. In order to highlight the reasons for exploring the structure and function of pRNA, we (1) provide an overview of Φ29-like bacteriophage and the Φ29 DNA packaging motor, including putative motor mechanisms and structures of its component parts; (2) discuss pRNA structure and possible roles for pRNA in the Φ29 packaging motor; (3) summarize pRNA self-assembly; and (4) describe the prospective therapeutic applications of pRNA. Many questions remain to be answered in order to connect what is currently known about pRNA structure to its novel function in the Φ29 packaging motor. The knowledge gained from studying the structure, function, and sequence variation in pRNA will help develop tools to better navigate the conformational landscapes of RNA. WIREs RNA 2016, 7:428-437. doi: 10.1002/wrna.1330 For further resources related to this article, please visit the WIREs website.
Thermodynamic stabilities of three-way junction nanomotifs in prohead RNA.
The thermodynamic stabilities of four natural prohead or packaging RNA (pRNA) three-way junction (3WJ) nanomotifs and seven phi29 pRNA 3WJ deletion mutant nanomotifs were investigated using UV optical melting on a three-component RNA system. Our data reveal that some pRNA 3WJs are more stable than the phi29 pRNA 3WJ. The stability of the 3WJ contributes to the unique self-assembly properties of pRNA. Thus, ultrastable pRNA 3WJ motifs suggest new scaffolds for pRNA-based nanotechnology. We present data demonstrating that pRNA 3WJs differentially respond to the presence of metal ions. A comparison of our data with free energies predicted by currently available RNA secondary structure prediction programs shows that these programs do not accurately predict multibranch loop stabilities. These results will expand the existing parameters used for RNA secondary structure prediction from sequence in order to better inform RNA structure-function hypotheses and guide the rational design of functional RNA supramolecular assemblies.
Student-Led Development of an Interactive and Free Biochemical Methods eBook
An approach to create an interactive and inexpensive electronic book (eBook) for an undergraduate biochemistry laboratory course is presented. This approach featured the involvement of an undergraduate student in the lead role of designing and developing the eBook using Apple's iBooks Author application. The eBook, entitled Introduction to Biochemical Methods, contains original, interactive course content, including laboratory protocols, lecture slides, images, videos, figures, and quizzes. Access to the book content was expanded through the creation of a Web-based version of the book. User access analytics on both the eBook and the Web site, along with student survey data related to the usage of and attitudes toward the eBook, also are presented. Although the Introduction to Biochemical Methods eBook was developed specifically for use in a particular course, adaptation of its content for use in other classrooms is invited, and educators are encouraged to adopt a similar approach (i.e., involving their students) in developing eBooks for courses at their learning institutions. The immersive nature of the design and development process provided significant learning experiences for the student who led the development of the eBook.
Chemically Synthesized, Self-Assembling Small Interfering RNA-Prohead RNA Molecules Trigger Dicer-Independent Gene Silencing.
RNA interference (RNAi) mediated by small interfering RNA (siRNA) duplexes is a powerful therapeutic modality, but the translation of siRNAs from the bench into clinical application has been hampered by inefficient delivery in vivo. An innovative delivery strategy involves fusing siRNAs to a three-way junction (3WJ) motif derived from the phi29 bacteriophage prohead RNA (pRNA). Chimeric siRNA-3WJ molecules are presumed to enter the RNAi pathway through Dicer cleavage. Here, we fused siRNAs to the phi29 3WJ and two phylogenetically related 3WJs. We confirmed that the siRNA-3WJs are substrates for Dicer in vitro. However, our results reveal that siRNA-3WJs transfected into Dicer-deficient cell lines trigger potent gene silencing. Interestingly, siRNA-3WJs transfected into an Argonaute 2-deficient cell line also retain some gene silencing activity. siRNA-3WJs are most efficient when the antisense strand of the siRNA duplex is positioned 5' of the 3WJ (5'-siRNA-3WJ) relative to 3' of the 3WJ (3'-siRNA-3WJ). This work sheds light on the functional properties of siRNA-3WJs and offers a design rule for maximizing their potency in the human RNAi pathway.
Chimeric Flaviviral RNA-siRNA Molecules Resist Degradation by The Exoribonuclease Xrn1 and Trigger Gene Silencing in Mammalian Cells.
RNA is an emerging platform for drug delivery, but the susceptibility of RNA to nuclease degradation remains a major barrier to its implementation in vivo. Here, we engineered flaviviral Xrn1-resistant RNA (xrRNA) motifs to host small interfering RNA (siRNA) duplexes. The xrRNA-siRNA molecules self-assemble in vitro, resist degradation by the conserved eukaryotic 5' to 3' exoribonuclease Xrn1, and trigger gene silencing in 293T cells. The resistance of the molecules to Xrn1 does not translate to stability in blood serum. Nevertheless, our results demonstrate that flavivirus-derived xrRNA motifs can confer Xrn1 resistance on a model therapeutic payload and set the stage for further investigations into using the motifs as building blocks in RNA nanotechnology.
High-order structures from nucleic acids for biomedical applications
Over the past 40 years, research in the fields of DNA nanotechnology and RNA nanotechnology has taken nucleic acid molecules out of their biological contexts and harnessed their unique base-pairing and self-assembly properties to generate well-defined, organized, and functional supramolecular architectures. Capitalizing on an intrinsic biocompatibility and the ability to tailor size, shape, and functionality from the bottom up, recent work has positioned high-order nucleic acid structures as powerful biomedical tools. This review summarizes advances in nanotechnology that have enabled the fabrication of synthetic nucleic acid structures. Nucleic acid-based platforms for biosensing and therapeutic drug delivery are highlighted. Finally, an outlook that considers the limitations and future challenges for this field is presented.
The MOE Modification of RNA: Origins and Widescale Impact on the Oligonucleotide Therapeutics Field
In an article published by Helvetica Chimica Acta in 1995, chemist P. Martin describes the synthesis of 2′-O-alkylated ribonucleosides for use in therapeutic antisense oligonucleotides (ASOs). This work was motivated by the need for a modified ribose structure that was compatible with solid-phase synthesis protocols and that, when incorporated into an oligonucleotide, would render it resistant to nucleases without attenuating its ability to hybridize to a complementary RNA target. Martin described a robust route to 2′-O-alkylribonucleosides in which the ribose 2′-OH group is substituted with 2′-ethylene glycol derivatives. Oligonucleotides containing these modifications displayed überraschende Eigenschaften – ‘surprising properties’ – notably, higher affinity and specificity for RNA substrates and greater stability to nucleases relative to their unmodified counterparts. Today, the 2′-ethylene glycol modification is universally known in the field as the 2′-O-methoxyethyl (MOE) modification. The chemistry features in four ASO drugs and many others in clinical trials. Here, we 1) summarize the synthesis of the MOE-modified ribose; 2) outline the properties of MOE-modified oligonucleotides as reported in Martin’s article; 3) highlight the first approved MOE-modified ASO drugs, mipomersen and nusinersen; and 4) survey MOE-modified ASOs in clinical development. In the outlook, we put these developments into context and consider future possibilities for the MOE modification.
Peptide Conjugates of a 2'-O-Methoxyethyl Phosphorothioate Splice-Switching Oligonucleotide Show Increased Entrapment in Endosomes.
Antisense oligonucleotides (ASOs) are short, single-stranded nucleic acid molecules that alter gene expression. However, their transport into appropriate cellular compartments is a limiting factor in their potency. Here, we synthesized splice-switching oligonucleotides (SSOs) previously developed to treat the rare disease erythropoietic protoporphyria. Using chemical ligation-quantitative polymerase chain reaction (CL-qPCR), we quantified the SSOs in cells and subcellular compartments following free uptake. To drive nuclear localization, we covalently conjugated nuclear localization signal (NLS) peptides to a lead 2'-O-methoxyethyl phosphorothioate SSO using thiol-maleimide chemistry. The conjugates and parent SSO displayed similar RNA target-binding affinities. CL-qPCR quantification of the conjugates in cells and subcellular compartments following free uptake revealed one conjugate with better nuclear accumulation relative to the parent SSO. However, compared to the parent SSO, which altered the splicing of the target pre-mRNA, the conjugates were inactive at splice correction under free uptake conditions in vitro. Splice-switching activity could be conferred on the conjugates by delivering them into cells via cationic lipid-mediated transfection or by treating the cells into which the conjugates had been freely taken up with chloroquine, an endosome-disrupting agent. Our results identify the major barrier to the activity of the peptide-oligonucleotide conjugates as endosomal entrapment.
Respiratory mucosal immune memory to SARS-CoV-2 after infection and vaccination.
Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, the capacity of peripheral vaccination to generate sustained immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Here we show using bronchoalveolar lavage samples that donors with history of both infection and vaccination have more airway mucosal SARS-CoV-2 antibodies and memory B cells than those only vaccinated. Infection also induces populations of airway spike-specific memory CD4+ and CD8+ T cells that are not expanded by vaccination alone. Airway mucosal T cells induced by infection have a distinct hierarchy of antigen specificity compared to the periphery. Spike-specific T cells persist in the lung mucosa for 7 months after the last immunising event. Thus, peripheral vaccination alone does not appear to induce durable lung mucosal immunity against SARS-CoV-2, supporting an argument for the need for vaccines targeting the airways.
Antibody and B-cell immune responses against Bordetella pertussis following infection and immunization.
Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.
A Cre-dependent massively parallel reporter assay allows for cell-type specific assessment of the functional effects of non-coding elements in vivo.
The function of regulatory elements is highly dependent on the cellular context, and thus for understanding the function of elements associated with psychiatric diseases these would ideally be studied in neurons in a living brain. Massively Parallel Reporter Assays (MPRAs) are molecular genetic tools that enable functional screening of hundreds of predefined sequences in a single experiment. These assays have not yet been adapted to query specific cell types in vivo in a complex tissue like the mouse brain. Here, using a test-case 3'UTR MPRA library with genomic elements containing variants from autism patients, we developed a method to achieve reproducible measurements of element effects in vivo in a cell type-specific manner, using excitatory cortical neurons and striatal medium spiny neurons as test cases. This targeted technique should enable robust, functional annotation of genetic elements in the cellular contexts most relevant to psychiatric disease.
Structural and non-coding variants increase the diagnostic yield of clinical whole genome sequencing for rare diseases.
BACKGROUND: Whole genome sequencing is increasingly being used for the diagnosis of patients with rare diseases. However, the diagnostic yields of many studies, particularly those conducted in a healthcare setting, are often disappointingly low, at 25-30%. This is in part because although entire genomes are sequenced, analysis is often confined to in silico gene panels or coding regions of the genome. METHODS: We undertook WGS on a cohort of 122 unrelated rare disease patients and their relatives (300 genomes) who had been pre-screened by gene panels or arrays. Patients were recruited from a broad spectrum of clinical specialties. We applied a bioinformatics pipeline that would allow comprehensive analysis of all variant types. We combined established bioinformatics tools for phenotypic and genomic analysis with our novel algorithms (SVRare, ALTSPLICE and GREEN-DB) to detect and annotate structural, splice site and non-coding variants. RESULTS: Our diagnostic yield was 43/122 cases (35%), although 47/122 cases (39%) were considered solved when considering novel candidate genes with supporting functional data into account. Structural, splice site and deep intronic variants contributed to 20/47 (43%) of our solved cases. Five genes that are novel, or were novel at the time of discovery, were identified, whilst a further three genes are putative novel disease genes with evidence of causality. We identified variants of uncertain significance in a further fourteen candidate genes. The phenotypic spectrum associated with RMND1 was expanded to include polymicrogyria. Two patients with secondary findings in FBN1 and KCNQ1 were confirmed to have previously unidentified Marfan and long QT syndromes, respectively, and were referred for further clinical interventions. Clinical diagnoses were changed in six patients and treatment adjustments made for eight individuals, which for five patients was considered life-saving. CONCLUSIONS: Genome sequencing is increasingly being considered as a first-line genetic test in routine clinical settings and can make a substantial contribution to rapidly identifying a causal aetiology for many patients, shortening their diagnostic odyssey. We have demonstrated that structural, splice site and intronic variants make a significant contribution to diagnostic yield and that comprehensive analysis of the entire genome is essential to maximise the value of clinical genome sequencing.
An Induced Pluripotent Stem Cell-Derived Human Blood-Brain Barrier (BBB) Model to Test the Crossing by Adeno-Associated Virus (AAV) Vectors and Antisense Oligonucleotides.
The blood-brain barrier (BBB) is the specialised microvasculature system that shields the central nervous system (CNS) from potentially toxic agents. Attempts to develop therapeutic agents targeting the CNS have been hindered by the lack of predictive models of BBB crossing. In vitro models mimicking the human BBB are of great interest, and advances in induced pluripotent stem cell (iPSC) technologies and the availability of reproducible differentiation protocols have facilitated progress. In this study, we present the efficient differentiation of three different wild-type iPSC lines into brain microvascular endothelial cells (BMECs). Once differentiated, cells displayed several features of BMECs and exhibited significant barrier tightness as measured by trans-endothelial electrical resistance (TEER), ranging from 1500 to >6000 Ωcm2. To assess the functionality of our BBB models, we analysed the crossing efficiency of adeno-associated virus (AAV) vectors and peptide-conjugated antisense oligonucleotides, both currently used in genetic approaches for the treatment of rare diseases. We demonstrated superior barrier crossing by AAV serotype 9 compared to serotype 8, and no crossing by a cell-penetrating peptide-conjugated antisense oligonucleotide. In conclusion, our study shows that iPSC-based models of the human BBB display robust phenotypes and could be used to screen drugs for CNS penetration in culture.