Search results
Found 7116 matches for
Oligonucleotides - short DNA or RNA molecules - have great therapeutic application for a range of diseases. Yet, their potential has not been fully unleashed because of challenges linked to efficient delivery. Read more to find out about recent developments in oligonucleotide modifications, and the platforms that may be used to deliver them to target sites.
Diagnosis of Plasmodium falciparum malaria at very low parasitaemias using a commercially available LAMP assay and RDT.
BACKGROUND: Malaria is the most common tropical infection in the UK. Current guidelines suggest that testing on 3 consecutive days is required following an initial negative result. This study aimed to see whether newer diagnostics (loop-mediated amplification assay [LAMP]) had sufficient sensitivity to support a change in diagnostic practice. METHODS: Blood samples from 11 participants who had undergone controlled human malaria infection (CHMI) with Plasmodium falciparum malaria were assessed from day 6 (C+6) for malaria positivity using the Carestart Malaria rapid diagnostic test (RDT) and from C+4 using the Alethia Malaria LAMP assay. Quantitative polymerase chain reaction had been performed twice daily during CHMI follow-up. A retrospective analysis of samples submitted to the Sheffield Teaching Hospitals for malaria testing over a 5-y period was conducted, evaluating the combination of the Carestart RDT alongside blood film analysis, as per UK guidelines. RESULTS: In CHMI samples, LAMP was positive for all parasitaemias >1000 parasites/ml, whereas RDTs were less reliable (59% positive for parasitaemias >1000 parasites/ml). The combination of RDT and blood films for clinical samples diagnosed most infections, but only a minority of negative samples had subsequent tests. CONCLUSIONS: LAMP has higher sensitivity than current UK recommended methods, with a potential to review the requirement for additional days of testing in the majority of patients.
Epidemiology and Management of Pediatric Group A Streptococcal Pneumonia With Parapneumonic Effusion: An Observational Study.
BACKGROUND: During autumn/winter 2022, UK pediatricians reported an unseasonal increase in invasive group A streptococcal infections; a striking proportion presenting with pneumonia with parapneumonic effusion. METHODS: Clinicians across the United Kingdom were requested to submit pseudonymized clinical data using a standardized report form for children (<16 years) admitted between September 30, 2022 and February 17, 2023, with microbiologically confirmed group A streptococcal pneumonia with parapneumonic effusion. RESULTS: From 185 cases submitted, the median patient age was 4.4 years, and 163 (88.1%) were previously healthy. Respiratory viral coinfection was detected on admission for 101/153 (66.0%) children using extended respiratory pathogen polymerase chain reaction panel. Molecular testing was the primary method of detecting group A streptococcus on pleural fluid (86/171; 50.3% samples). Primary surgical management was undertaken in 171 (92.4%) children; 153/171 (89.4%) had pleural drain inserted (96 with fibrinolytic agent), 14/171 (8.2%) had video-assisted thoracoscopic surgery. Fever duration after admission was prolonged (median, 12 days; interquartile range, 9-16). Intravenous antibiotic courses varied in length (median, 14 days; interquartile range, 12-21), with many children receiving multiple broad-spectrum antibiotics, although evidence for additional bacterial infection was limited. CONCLUSIONS: Most cases occurred with viral coinfection, a previously well-recognized risk with influenza and varicella zoster, highlighting the need to ensure routine vaccination coverage and progress on vaccines for other common viruses (eg, respiratory syncytial virus, human metapneumovirus) and for group A streptococcus. Molecular testing is valuable to detect viral coinfection and confirm invasive group A streptococcal diagnosis, expediting the incorporation of cases into national reporting systems. Range and duration of intravenous antibiotics administered demonstrated the need for research on the optimal duration of antimicrobials and improved stewardship.
Longitudinal kinetics of the viral infection biomarker 3'-deoxy-3',4'-didehydro-cytidine in SARS-CoV-2, influenza A virus and RSV human challenge models.
3'-deoxy-3',4'-didehydro-cytidine (ddhC) is a recently discovered host biomarker for viral infections, though its temporal kinetics remain unclear. This study tests the hypothesis that ddhC is an acute phase reactant, rising shortly after viral infection and subsequently falling to baseline. We leveraged the precise monitoring facilitated by human challenge studies to investigate healthy participants inoculated with SARS-CoV-2, influenza A virus (H3N2), or respiratory syncytial virus (RSV). Using targeted liquid chromatography-tandem mass spectrometry, we quantified ddhC concentrations in serial plasma samples collected pre- and post-inoculation. In SARS-CoV-2 and H3N2 influenza A virus infection, but not RSV, ddhC levels peaked at 3-7 days post inoculation and declined to baseline by days 10-14. This pattern was also observed in asymptomatic or paucisymptomatic participants. A comparison of ddhC concentrations with matched timepoint whole blood gene expression revealed a correlation with interferon-related genes, including viperin and CMPK2-enzymes implicated in its upstream biosynthesis. Our results suggest that ddhC is a biomarker of the acute phase of viral infection, with potential to guide early interventions that reduce antimicrobial resistance and strengthen pandemic preparedness. Future work should explore ddhC dynamics in natural and experimental infections across varying severities and assess its utility in diverse populations and healthcare settings.
A novel whole blood assay to quantify the release of T cell associated cytokines in response to Bordetella pertussis antigens.
BACKGROUND: Bordetella pertussis continues to cause whooping cough globally even in countries with high immunisation coverage. Booster vaccinations with acellular pertussis vaccines are thus used in children, adolescents, and adults. T cell immunity is crucial for orchestrating the immune response after vaccination. However, T cell assays can be expensive and difficult to implement in large clinical trials. In this study, a whole blood (WB) stimulation assay was developed to identify secreted T cell associated cytokines in different age groups after acellular pertussis booster vaccination. MATERIAL AND METHODS: Longitudinal WB samples were collected from a small set of subjects (n = 38) aged 7-70 years participating in a larger ongoing clinical trial. For assay development, samples were diluted and incubated with purified inactivated pertussis toxin (PT), filamentous haemagglutinin (FHA), inactivated B. pertussis lysate, and complete medium (M) as stimulating conditions, with anti-CD28 and anti-CD49d as co-stimulants. Different timepoints around the vaccination (D0, D7, D14, D28), WB dilution factor (1:2, 1:4) and incubation time (24 h, 48 h, 72 h) were compared. Responses to 15 cytokines were tested with Luminex/multiplex immunoassay. RESULTS: The optimized assay consisted of WB incubation with M, PT, and FHA (including the two co-stimulants). After 48 h incubation, supernatants were collected for measurement of seven selected T cell associated cytokines (IL-2, IL-5, IL-10, IL-13, IL-17 A, IL-17F, and IFN-y) from samples before and 28 days after vaccination. PT stimulation showed a trend for upregulation of IL-2, IL-13, and IL-17 A/F for adult subjects, whereas the responses of all cytokines were downregulated for the paediatric subjects. Furthermore, PT and FHA-stimulated WB showed diverse cytokine producing profiles. CONCLUSIONS: The developed WB-based cytokine assay was shown to be less costly, easy to perform, and functional in differently aged individuals. Further, it requires only a small amount of fresh blood, which is beneficial especially for studies including infants. Our results support the use of this assay for other immunological studies in the future.
5-year vaccine protection following a single dose of Vi-tetanus toxoid conjugate vaccine in Bangladeshi children (TyVOID): a cluster randomised trial.
BACKGROUND: WHO currently recommends a single dose of typhoid conjugate vaccine (TCV) in high-burden countries based on 2-year vaccine efficacy data from large randomised controlled trials. Given the decay of immunogenicity, the protection beyond 2 years is unknown. We therefore extended the follow-up of the TyVAC trial in Bangladesh to assess waning of vaccine protection to 5 years after vaccination. METHODS: We conducted a cluster randomised controlled trial (TyVAC; ISRCTN11643110) in Dhaka, Bangladesh, between 2018 and 2021. Children aged 9 months to 15 years were invited to receive a single dose of TCV or Japanese encephalitis vaccine between April 15, 2018, and November 16, 2019, based on the randomisation of their clusters of residence. Children who received the Japanese encephalitis vaccine were invited to receive TCV at the final visit between Jan 6, and Aug 31, 2021, according to the protocol. This follow-on study extended the follow-up of the original trial until Aug 14, 2023. The primary endpoint of this study was to compare the incidence of blood culture-confirmed typhoid between children who received TCV in 2018-19 (the previous-TCV group) and those who received the vaccine in 2021 (the recent-TCV group), to evaluate the relative decline in vaccine protection. We also did a nested study using the test-negative design comparing the recent-TCV and previous-TCV groups with unvaccinated individuals, as well as an immunogenicity study in a subset of 1500 children. FINDINGS: Compared with the recent-TCV group, the previous-TCV group had an increased risk of typhoid fever between 2021-23, with an adjusted incidence rate ratio of 3·10 (95% CI 1·53 to 6·29; p<0·0001), indicating a decline in the protection of a single-dose of TCV 3-5 years after vaccination. The extrapolated vaccine effectiveness in years 3-5 was 50% (95% CI -13 to 78), and was validated using the test-negative design analysis, with a vaccine effectiveness of 84% (74 to 90) in the recent-TCV group and 55% (36 to 68) in the previous-TCV group, compared with unvaccinated individuals. Anti-Vi-IgG responses declined over the study period. The highest rate of decay was seen in children vaccinated at younger than 2 years in the original trial. The inverse correlation between age and the decay of antibodies was also seen in the subgroup analysis of vaccine effectiveness, where the youngest age group (<7 years at fever visits) exhibited the fastest waning, with vaccine effectiveness dropping to 24% (95% CI -29 to 55) at 3-5 years after vaccination. INTERPRETATION: A decline in the protection conferred by a single-dose TCV was observed 3-5 years after vaccination, with the greatest decline in protection and immune responses observed in children vaccinated at younger ages. A booster dose of TCV around school entry age might be needed for children vaccinated while younger than 2 years to sustain protection against typhoid fever during the school years when the risk is the highest. FUNDING: The Bill & Melinda Gates Foundation.
Prediction and characterisation of the human B cell response to a heterologous two-dose Ebola vaccine.
Ebola virus disease (EVD) outbreaks are increasing, posing significant threats to affected communities. Effective outbreak management depends on protecting frontline health workers, a key focus of EVD vaccination strategies. IgG specific to the viral glycoprotein serves as the correlate of protection for recent vaccine licensures. Using advanced cellular and transcriptomic analyses, we examined B cell responses to the Ad26.ZEBOV, MVA-BN-Filo EVD vaccine. Our findings reveal robust plasma cell and lasting B cell memory responses post-vaccination. Machine-learning models trained on blood gene expression predicted antibody response magnitude. Notably, we identified a unique B cell receptor CDRH3 sequence post-vaccination resembling known Orthoebolavirus zairense (EBOV) glycoprotein-binding antibodies. Single-cell analyses further detailed changes in plasma cell frequency, subclass usage, and CDRH3 properties. These results highlight the predictive power of early immune responses, captured through systems immunology, in shaping vaccine-induced B cell immunity.
Reactogenicity, immunogenicity and breakthrough infections following heterologous or fractional second dose COVID-19 vaccination in adolescents (Com-COV3): A randomised controlled trial.
BACKGROUND: This was the first study to investigate the reactogenicity and immunogenicity of heterologous or fractional second dose COVID-19 vaccine regimens in adolescents. METHODS: A phase II, single-blind, multi-centre, randomised-controlled trial recruited across seven UK sites from September to November 2021, with follow-up visits to August 2022. Healthy 12-to-16 years olds were randomised (1:1:1) to either 30 µg BNT162b2 (BNT-30), 10 µg BNT162b2 (BNT-10), or NVX-CoV2373 (NVX), 8 weeks after a first 30 µg dose of BNT162b2. The primary outcome was solicited systemic reactions in the week following vaccination. Secondary outcomes included immunogenicity and safety. 'Breakthrough infection' analyses were exploratory. FINDINGS: 148 participants were recruited (median age 14 years old, 62% female, 26% anti-nucleocapsid IgG seropositive pre-second dose); 132 participants received a second dose. Reactions were mostly mild-to-moderate, with lower rates in BNT-10 recipients. No vaccine-related serious adverse events occurred. Compared to BNT-30, at 28 days post-second dose anti-spike antibody responses were similar for NVX (adjusted geometric mean ratio [aGMR]) 1.09 95% confidence interval (CI): 0.84, 1.42] and lower for BNT-10 (aGMR 0.78 [95% CI: 0.61, 0.99]). For Omicron BA.1 and BA.2, the neutralising antibody titres for BNT-30 at day 28 were similar for BNT-10 (aGMR 1.0 [95% CI: 0.65, 1.54] and 1.02 [95% CI: 0.71, 1.48], respectively), but higher for NVX (aGMR 1.7 [95% CI: 1.07, 2.69] and 1.43 [95% CI: 0.96, 2.12], respectively). Compared to BNT-30, cellular immune responses were greatest for NVX (aGMR 1.73 [95% CI: 0.94, 3.18]), and lowest for BNT-10 (aGMR 0.65 [95% CI: 0.37, 1.15]) at 14 days post-second dose. Cellular responses were similar across the study arms by day 236 post-second dose. Amongst SARS-CoV-2 infection naïve participants, NVX participants had an 89% reduction in risk of self-reported 'breakthrough infection' compared to BNT-30 (adjusted hazard ratio [aHR] 0.11 [95% CI: 0.01, 0.86]) up until day 132 after second dose. BNT-10 recipients were more likely to have a 'breakthrough infection' compared to BNT-30 (aHR 2.14 [95% CI: 1.02, 4.51]) up to day 132 and day 236 post-second dose. Antibody responses at 132 and 236 days after second dose were similar for all vaccine schedules. INTERPRETATION: Heterologous and fractional dose COVID-19 vaccine schedules in adolescents are safe, well-tolerated and immunogenic. The enhanced performance of the heterologous schedule using NVX-CoV2373 against the Omicron SARS-CoV-2 variant suggests this mRNA prime and protein-subunit boost schedule may provide a greater breadth of protection than the licensed homologous schedule. FUNDING: National Institute for Health Research and Vaccine Task Force. TRIAL REGISTRATION: International Standard Randomised Controlled Trial Number registry: 12348322.
LISTEN: lived experiences of Long COVID: a social media analysis of mental health and supplement use.
INTRODUCTION: Long COVID, or Post-Acute Sequelae of SARS-CoV-2 infection (PASC), is a complex condition characterized by a wide range of persistent symptoms that can significantly impact an individual's quality of life and mental health. This study explores public perspectives on the mental health impact of Long COVID and the use of dietary supplements for recovery, drawing on social media content. It uniquely addresses how individuals with Long COVID discuss supplement use in the absence of public health recommendations. METHODS: The study employs the LISTEN method ("Collaborative and Digital Analysis of Big Qual Data in Time Sensitive Contexts"), an interdisciplinary approach that combines human insight and digital analysis software. Social media data related to Long COVID, mental health, and supplement use were collected using the Pulsar Platform. Data were analyzed using the free-text discourse analysis tool Infranodus and collaborative qualitative analysis methods. RESULTS: The findings reveal key themes, including the impact of Long COVID on mental health, occupational health, and the use of food supplements. Analysis of attitudes toward supplement use highlights the prevalence of negative emotions and experiences among Long COVID patients. The study also identifies the need for evidence-based recommendations and patient education regarding supplement use. DISCUSSION: The findings contribute to a better understanding of the complex nature of Long COVID and inform the development of comprehensive, patient-centered care strategies addressing both physical and mental health needs.
Immunogenicity and Safety of ChAdOx1 nCoV-19 (AZD1222) as a Homologous Fourth-Dose Booster: A Substudy of the Phase 3 COV003 Trial in Brazil
Objective: To address that, despite widespread use of ChAdOx1 nCoV-19 (AZD1222) as a COVID-2019 booster, fourth-dose clinical outcomes data are limited. We report immunogenicity and safety for ChAdOx1 nCoV-19 as a homologous fourth-dose booster. Participants and Methods: Participants (aged ≥18 years) who had received 2 doses of ChAdOx1 nCoV-19 in phase 3 COV003 trial in Brazil were offered a third dose after a planned dose interval from 11 to 13 months and a fourth dose after a planned interval from 6 to 15 months (both 5 × 1010 viral particles). All fourth doses were administered to substudy participants between August 18 and October 28, 2022. The data cutoff was December 9, 2022. The primary immunogenicity outcome was noninferiority of ancestral severe acute respiratory syndrome coronavirus (SARS-CoV)-2–neutralizing antibody responses 28 days after dose 4 versus dose 3. Solicited and unsolicited adverse events were recorded 7 and 28 days postdose 4, respectively. Results: 172 participants received a fourth dose (median interval postthird dose, 10.7 months). Ancestral SARS-CoV-2–neutralizing antibody titers postdose 4 were noninferior to those postdose 3; geometric mean fold rise was 1.9 (95% CI, 1.6-2.4; n=112). Immunogenicity results were consistent across all variants analyzed. Local and systemic solicited adverse events were reported in 60.3% (n=35/58) and 43.1% (n=25/58) of participants, respectively. Conclusion: Immune responses after a fourth dose of ChAdOx1 nCoV-19 were noninferior to those after a third dose across SARS-CoV-2 variants. The fourth dose was well tolerated with no emergent safety concerns, supporting the continued development of the ChAdOx1 platform in preparation for future pandemics. Trial Registration: clinicaltrials.gov Identifier: NCT04536051
Placental transfer of SARS-CoV-2 antibodies in mother-neonate pairs: a prospective nested cohort study.
BACKGROUND: Newborns depend on the transfer of IgG across the placenta to acquire protection against pathogens. We assessed the placental transfer of SARS-CoV-2 antibodies, primarily derived from infection, from seropositive pregnant women enrolled in a pregnancy cohort in Kilifi, Kenya. METHODS: The study was nested within a prospective observational multi-country cohort study. All available paired maternal delivery and cord blood samples were selected. Maternal sera were tested for SARS-CoV-2 receptor binding domain (RBD) IgM/IgG total antibodies using the Wantai assay. For positive samples, maternal and corresponding cord blood samples were tested for SARS-CoV-2 IgG antibodies against the spike (anti-spike) and nucleocapsid proteins (anti-NCP) using ELISA kits from Euroimmun. RESULTS: A total of 492 (56.1%) out of 877 maternal delivery samples were positive for RBD IgM/IgG total antibodies. Of these, 416 (84.6%) were seropositive for either anti-NCP IgG, anti-spike IgG antibodies or both. A total of 412 out of 496 (83%) cord blood samples tested positive for either anti-NCP or anti-spike antibodies. The geometric mean ratio was 1.04 (95% CI: 0.90, 1.21), indicating no significant difference between the anti-spike IgG concentration in cord and maternal blood samples. The log-transformed maternal and cord blood anti-spike IgG concentrations showed a weak positive correlation (r = 0.364, n = 496, p
Understanding the interaction of upper respiratory tract infection with respiratory syncytial virus and Streptococcus pneumoniae using a human challenge model: a multicenter, randomized controlled study protocol.
BACKGROUND: Streptococcus pneumoniae (pneumococcus) and respiratory syncytial virus (RSV) are major causes of respiratory infections globally. Viral and bacterial co-infections are commonly observed in respiratory infections and there is evidence that these pathogens interact synergistically to evade host responses and lead to more severe disease. Notably, RSV seasonal outbreaks are associated with increased hospitalization and a subsequent peak in invasive pneumococcal disease cases, particularly in pediatric populations. Here, we summarize a protocol for a controlled human infection model aiming to evaluate pathogen interaction dynamics and immune responses in a combined pneumococcus and RSV model. The primary objective is to determine whether primary RSV challenge increases the risk of secondary pneumococcal colonization. METHODS: This is an open-label, multi-center, randomized controlled human co-infection study, inclusive of a pilot phase. Individuals will be randomized to primary inoculation with either pneumococcus (serotype 6B) or RSV (subtype RSV-A) intra-nasally on day 0 followed by a reciprocal challenge on day 7. During pilot phase A up to 10 participants will be monitored in an in-patient facility for 7-10 days following RSV-A challenge. If there are no safety concerns, we will then progress to an outpatient phase where participants will self-isolate at home. Clinical samples to be taken from participants include nasal swabs and washes for pathogen detection; and nasal cells, nasal lining fluid, and blood samples to examine mucosal and systemic immune responses. DISCUSSION: This work will lead to important scientific knowledge on the interaction and dynamics between pneumococcus and RSV. This knowledge could help inform pneumococcal and RSV vaccination strategies, particularly for groups at risk of developing severe pneumococcal and RSV disease. TRIAL REGISTRATION: The study is registered on ISRCTN (The UKs Clinical Study Registry). DOI https://doi.org/10.1186/ISRCTN12036902.
Predicting trajectories of the north star ambulatory assessment total score in Duchenne muscular dystrophy.
The North Star Ambulatory Assessment (NSAA) is a widely used functional endpoint in drug development for ambulatory patients with Duchenne muscular dystrophy (DMD). Accurately predicting NSAA total score trajectories is important for designing randomized trials for novel therapies in DMD and for contextualizing outcomes, especially over longer-term follow-up (>18 months) when placebo-controlled studies are infeasible. We developed a prognostic model for NSAA total score trajectories over at most 5 years of follow-up for patients with DMD aged 4 to <16 years who were initially ambulatory and receiving corticosteroids but no other disease-modifying therapies. The model was based on longitudinal data from four natural history databases: UZ Leuven, PRO-DMD-01 (provided by CureDuchenne), the North Star Clinical Network, and iMDEX. Candidate predictors included age, height, weight, body mass index, steroid type and regime, NSAA total score, rise from floor velocity, and 10-meter walk/run velocity, as well as DMD genotype class, index year, and data source. Among N = 416 patients at baseline, mean age was 8.2 years, mean NSAA total score was 24, and 61% were receiving prednisone and 39% deflazacort, with the majority having been treated with daily corticosteroid regimens (69%) relative to other regimens (31%). Patients had an average of four NSAA assessments post-baseline during a median follow-up of 2.6 years (inter-quartile range 1.9 to 3.6 years). The best-fitting model in the full study sample explained 39% of the variation in NSAA total score changes, with prediction errors of ±3.6, 5.1, 5.9, 7.5, 9.5 NSAA units during follow-up years 1-5, respectively. The most important predictors were baseline age, NSAA, rise from floor velocity, and 10-meter walk/run velocity. In conclusion, trajectories of ambulatory motor function in DMD, as measured by the NSAA total score, can be well-predicted using readily available baseline characteristics. We discuss applications of these predictions to DMD drug development.
Respiratory viral detection in children hospitalized with pneumonia during periods of major population disruptions in Nepal, 2014-2018.
BACKGROUND: Respiratory viruses commonly cause pneumonia in children. We aimed to identify respiratory viral nucleic acids in the nasopharynx of children admitted with pneumonia from 2014 to 2018, a period including a major earthquake (April 2015), PCV10 introduction (August 2015), and a fuel shortage (October 2015 to March 2016). METHODS: Children 2 months to 14 years admitted to Patan Hospital between March 2014 and February 2018 with a clinical diagnosis of pneumonia had nasopharyngeal swabs collected and tested with a multiplex panel for the presence of genetic material from 23 respiratory pathogens. RESULTS: Of 1343 children with pneumonia, 974 (72.5%) had the nucleic acids of at least one respiratory virus in the nasopharynx. The median age of children with any viral genetic material detected was lower than those without (1.18, IQR: 0.59-2.39 years; versus 2.01 years, IQR: 0.81-4.34 years; p<0.001). Commonly detected viral nucleic acids included those of RSV (21.0%), rhino/enterovirus (30.8%), and parainfluenza (7.4%). The odds of detecting any respiratory viral genetic material in children with pneumonia increased by 1.88 (95% confidence interval: 1.15, 3.06) in the year after the earthquake, when there were several aftershocks and a fuel crisis, relative to other periods and accounting for other potential confounding factors. CONCLUSIONS: These findings highlight the importance of viral diagnostics in pediatric pneumonia and suggest that public health measures addressing environmental conditions during disasters might help reduce respiratory infections.