Search results
Found 6981 matches for
Cell-penetrating peptide-conjugated, splice-switching oligonucleotides mitigate the phenotype in BTK/Tec double deficient X-linked agammaglobulinemia model.
Splice-switching oligonucleotides (SSOs) have been developed as a treatment for various disorders, including Duchenne muscular dystrophy and spinal muscular atrophy. Here, the activity of several different SSOs was investigated as potential treatments for B lymphocyte disorders with a focus on X-linked agammaglobulinemia (XLA), caused by defects in the gene encoding Bruton's tyrosine kinase (BTK). In this study, the activity of locked nucleic acid (LNA), tricyclo-DNA (tcDNA), phosphoryl guanidine oligonucleotides (PGO) and phosphorodiamidate morpholino oligomers (PMO) were compared, targeting the pseudoexon region of BTK pre-mRNA. We further investigated the effect of conjugating cell-penetrating peptides, including Pip6a, to the SSOs. The effect was measured as splice-switching in vitro as well as in a further developed, bacterial artificial chromosome transgenic mouse model of XLA. Therapy in the form of intravenous infusions 2 times a week during 3 weeks of PMO oligomers conjugated to Pip6a was sufficient to partly restore the in vivo B lineage phenotype. SSOs treatment also provides a unique opportunity to get insights into a restoration process, when B lymphocytes of different maturation stages are simultaneously splice-corrected.
Animal models of intestinal inflammation: clues to the pathogenesis of inflammatory bowel disease
In the last decade a number of models of chronic intestinal inflammation have been described that resemble aspects of the pathology found in patients with inflammatory bowel disease. Several themes have emerged from these studies that are of relevance to the pathogenesis of inflammatory bowel disease. Firstly, intestinal inflammation is a consequence of an aberrant chronic immune response triggered by enteric bacteria. Both innate and adaptive immune mechanisms can cause colitis and in many models there is evidence of differential activation of T helper 1 (Th1)-type cells. Targeting the Th1 pathway prevents experimental colitis and there is also evidence that this may be useful in Crohn's disease. Secondly, specialized populations of regulatory T cells have been shown to prevent colitis and in some systems cure it, suggesting immune responses in the intestine are subject to dominant T cell-mediated control. Here we focus on new insights into the pathogenesis and regulation of intestinal inflammation as revealed by model systems and how these may be harnessed for the treatment of IBD.
Homing of intestinal immune cells
The homing of immune cells into the intestinal mucosa, the gut-associated lymphoid tissue or the mesenteric lymph nodes involves a complex process of molecular events that is dependent on cell type and cell maturation. Key factors that collectively determine the homing of leukocytes and their interaction with resident endothelial, epithelial, stromal and immune cells are interactions between integrins or selectins with their tissue adhesion molecules as well as chemokine receptors and their ligands. The organization of the small and large intestinal tissue and the mucosa associated lymphoid tissue as well as the presence or absence of inflammatory stimuli influence the homing of intestinal immune cells. The homing pattern of intestinal dendritic cells and CD4+ T cells and its role for the pathogenesis and regulation of inflammatory bowel disease are discussed.
Molecular profiling in MPN: who should have it and why?
Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) are a group of blood cancers that result from somatic mutations in hematopoietic stem cells, causing constitutive activation of JAK-STAT signaling pathways with consequent overproduction of 1 or more myeloid lineages. The initiating event in MPN pathogenesis is a genetic mutation, and consequently molecular profiling is central to the diagnosis, risk stratification, and, increasingly, monitoring of therapy response in persons with MPN. In this review we summarize current approaches to molecular profiling of classical MPNs (essential thrombocythemia, polycythemia vera, and myelofibrosis), using illustrative clinical case histories to demonstrate how genetic analysis is already fully integrated into MPN diagnostic classification and prognostic risk stratification. Molecular profiling can also be used in MPN to measure response to therapy both in clinical trials and increasingly in routine clinical practice. Taking a forward look, we discuss how molecular profiling in MPN might be used in the future to select specific molecularly targeted therapies and the role of additional genetic methodologies beyond mutation analysis.