Search results
Found 7174 matches for
A Randomised Controlled Trial of Nasal Immunisation with Live Virulence Attenuated Streptococcus pneumoniae Strains Using Human Infection Challenge.
RATIONALE: Pneumococcal pneumonia remains a global health problem. Pneumococcal colonisation increases local and systemic protective immunity, suggesting nasal administration of live attenuated S. pneumoniae strains could help prevent infections. OBJECTIVES: We used a controlled human infection model to investigate whether nasopharyngeal colonisation with attenuated S. pneumoniae strains protected against re-colonisation with wild-type (WT) S. pneumoniae (Spn). METHODS: Healthy adults aged 18-50 years were randomised (1:1:1:1) for nasal administration twice (two weeks interval) with saline, WT Spn6B (BHN418) or one of two genetically modified Spn6B strains - SpnA1 (∆fhs/piaA) or SpnA3 (∆proABC/piaA) (Stage I). After 6 months, participants were challenged with SpnWT to assess protection against the homologous serotype (Stage II). MEASUREMENTS AND MAIN RESULTS: 125 participants completed both study stages as per intention to treat. No Serious Adverse Events were reported. In Stage I, colonisation rates were similar amongst groups: SpnWT 58.1% (18/31), SpnA1 60% (18/30) and SpnA3 59.4% (19/32). Anti-Spn nasal IgG levels post-colonisation were similar in all groups whilst serum IgG responses were higher in the SpnWT and SpnA1 groups than the SpnA3 group. In colonised individuals, increases in IgG responses were identified against 197 Spn protein antigens and serotype 6 capsular polysaccharide using a pangenome array. Participants given SpnWT or SpnA1 in stage 1 were partially protected against homologous challenge with SpnWT (29% and 30% recolonisation rates, respectively) at stage II, whereas those exposed to SpnA3 achieved recolonisation rate similar to control group group (50% vs 47%, respectively). CONCLUSION: Nasal colonisation with genetically modified live attenuated Spn was safe and induced protection against recolonisation, suggesting nasal adminstration of live attenuated Spn could be an effective stategy for preventing pneumococcal infections.
Influence of sex, season and environmental air quality on experimental human pneumococcal carriage acquisition: a retrospective cohort analysis.
Streptococcus pneumoniae (pneumococcus) is the most commonly identified bacterial cause of pneumonia and the leading infectious cause of death in children under 5 years of age worldwide. Pneumococcal disease follows a seasonal pattern with increased incidence during winter. Pneumonia burden is also associated with poor air quality. Nasopharyngeal carriage of the bacterium is a pre-requisite of invasive disease. We aimed to determine if susceptibility to nasopharyngeal pneumococcal carriage varied by season and which environmental factors might explain such variation. We also evaluated the influence of sex on susceptibility of carriage. We collated data from five studies in which human volunteers underwent intranasal pneumococcal challenge. Generalised linear mixed-effects models were used to identify factors associated with altered risk of carriage acquisition, specifically climate and air-quality data. During 2011-2017, 374 healthy adults were challenged with type 6B pneumococcus. Odds of carriage were significantly lower in males (OR, 0.61; 95% CI, 0.40-0.92; p=0.02), and higher with cooler temperatures (OR, 0.79; 95% CI, 0.63-0.99; p=0.04). Likelihood of carriage was also associated with lower concentrations of local fine particulate matter concentrations (PM2.5) and increased local rainfall. In contrast to epidemiological series, experimental challenge allowed us to test propensity to acquisition during controlled exposures; immunological explanations for sex and climatic differences should be sought.
Thirteen-Valent Pneumococcal Conjugate Vaccine-Induced Immunoglobulin G (IgG) Responses in Serum Associated With Serotype-Specific IgG in the Lung.
Pneumococcal conjugate vaccine (PCV) efficacy is lower for noninvasive pneumonia than invasive disease. In this study, participants were immunized with 13-valent PCV (PCV13) or hepatitis A vaccine (control). Bronchoalveolar lavage samples were taken between 2 and 6 months and serum at 4 and 7 weeks postvaccination. In the lung, anti-capsular immunoglobulin G (IgG) levels were higher in the PCV13 group compared to controls for all serotypes, except 3 and 6B. Systemically, IgG levels were elevated in the PCV13 group at 4 weeks for all serotypes, except serotype 3. IgG in bronchoalveolar lavage and serum positively correlated for nearly all serotypes. PCV13 shows poor immunogenicity to serotype 3, implying lack of protective efficacy. Clinical Trials Registration. ISRCTN 45340436.
Persistence of immune response in heterologous COVID vaccination schedules in the Com-COV2 study - A single-blind, randomised trial incorporating mRNA, viral-vector and protein-adjuvant vaccines.
BACKGROUND: Heterologous COVID vaccine priming schedules are immunogenic and effective. This report aims to understand the persistence of immune response to the viral vectored, mRNA and protein-based COVID-19 vaccine platforms used in homologous and heterologous priming combinations, which will inform the choice of vaccine platform in future vaccine development. METHODS: Com-COV2 was a single-blinded trial in which adults ≥ 50 years, previously immunised with single dose 'ChAd' (ChAdOx1 nCoV-19, AZD1222, Vaxzevria, Astrazeneca) or 'BNT' (BNT162b2, tozinameran, Comirnaty, Pfizer/BioNTech), were randomised 1:1:1 to receive a second dose 8-12 weeks later with either the homologous vaccine, or 'Mod' (mRNA-1273, Spikevax, Moderna) or 'NVX' (NVX-CoV2373, Nuvaxovid, Novavax). Immunological follow-up and the secondary objective of safety monitoring were performed over nine months. Analyses of antibody and cellular assays were performed on an intention-to-treat population without evidence of COVID-19 infection at baseline or for the trial duration. FINDINGS: In April/May 2021, 1072 participants were enrolled at a median of 9.4 weeks after receipt of a single dose of ChAd (N = 540, 45% female) or BNT (N = 532, 39% female) as part of the national vaccination programme. In ChAd-primed participants, ChAd/Mod had the highest anti-spike IgG from day 28 through to 6 months, although the heterologous vs homologous geometric mean ratio (GMR) dropped from 9.7 (95% CI (confidence interval): 8.2, 11.5) at D28 to 6.2 (95% CI: 5.0, 7.7) at D196. The heterologous/homologous GMR for ChAd/NVX similarly dropped from 3.0 (95% CI:2.5,3.5) to 2.4 (95% CI:1.9, 3.0). In BNT-primed participants, decay was similar between heterologous and homologous schedules with BNT/Mod inducing the highest anti-spike IgG for the duration of follow-up. The adjusted GMR (aGMR) for BNT/Mod compared with BNT/BNT increased from 1.36 (95% CI: 1.17, 1.58) at D28 to 1.52 (95% CI: 1.21, 1.90) at D196, whilst for BNT/NVX this aGMR was 0.55 (95% CI: 0.47, 0.64) at day 28 and 0.62 (95% CI: 0.49, 0.78) at day 196. Heterologous ChAd-primed schedules produced and maintained the largest T-cell responses until D196. Immunisation with BNT/NVX generated a qualitatively different antibody response to BNT/BNT, with the total IgG significantly lower than BNT/BNT during all follow-up time points, but similar levels of neutralising antibodies. INTERPRETATION: Heterologous ChAd-primed schedules remain more immunogenic over time in comparison to ChAd/ChAd. BNT-primed schedules with a second dose of either mRNA vaccine also remain more immunogenic over time in comparison to BNT/NVX. The emerging data on mixed schedules using the novel vaccine platforms deployed in the COVID-19 pandemic, suggest that heterologous priming schedules might be considered as a viable option sooner in future pandemics. ISRCTN: 27841311 EudraCT:2021-001275-16.
Precision medicine in monogenic inflammatory bowel disease: proposed mIBD REPORT standards.
Owing to advances in genomics that enable differentiation of molecular aetiologies, patients with monogenic inflammatory bowel disease (mIBD) potentially have access to genotype-guided precision medicine. In this Expert Recommendation, we review the therapeutic research landscape of mIBD, the reported response to therapies, the medication-related risks and systematic bias in reporting. The mIBD field is characterized by the absence of randomized controlled trials and is dominated by retrospective observational data based on case series and case reports. More than 25 off-label therapeutics (including small-molecule inhibitors and biologics) as well as cellular therapies (including haematopoietic stem cell transplantation and gene therapy) have been reported. Heterogeneous reporting of outcomes impedes the generation of robust therapeutic evidence as the basis for clinical decision making in mIBD. We discuss therapeutic goals in mIBD and recommend standardized reporting (mIBD REPORT (monogenic Inflammatory Bowel Disease Report Extended Phenotype and Outcome of Treatments) standards) to stratify patients according to a genetic diagnosis and phenotype, to assess treatment effects and to record safety signals. Implementation of these pragmatic standards should help clinicians to assess the therapy responses of individual patients in clinical practice and improve comparability between observational retrospective studies and controlled prospective trials, supporting future meta-analysis.
Astrocytic β-catenin signaling via TCF7L2 regulates synapse development and social behavior.
The Wnt/β-catenin pathway contains multiple high-confidence risk genes that are linked to neurodevelopmental disorders, including autism spectrum disorder. However, its ubiquitous roles across brain cell types and developmental stages have made it challenging to define its impact on neural circuit development and behavior. Here, we show that TCF7L2, which is a key transcriptional effector of the Wnt/β-catenin pathway, plays a cell-autonomous role in postnatal astrocyte maturation and impacts adult social behavior. TCF7L2 was the dominant Wnt effector that was expressed in both mouse and human astrocytes, with a peak during astrocyte maturation. The conditional knockout of Tcf7l2 in postnatal astrocytes led to an enlargement of astrocytes with defective tiling and gap junction coupling. These mice also exhibited an increase in the number of cortical excitatory and inhibitory synapses and a marked increase in social interaction by adulthood. These data reveal an astrocytic role for developmental Wnt/β-catenin signaling in restricting excitatory synapse numbers and regulating adult social behavior.
The cellular response to extracellular vesicles is dependent on their cell source and dose.
Extracellular vesicles (EVs) have been established to play important roles in cell-cell communication and shown promise as therapeutic agents. However, we still lack a basic understanding of how cells respond upon exposure to EVs from different cell sources at various doses. Thus, we treated fibroblasts with EVs from 12 different cell sources at doses between 20 and 200,000 per cell, analyzed their transcriptional effects, and functionally confirmed the findings in various cell types in vitro, and in vivo using single-cell RNA sequencing. Unbiased global analysis revealed EV dose to have a more significant effect than cell source, such that high doses down-regulated exocytosis and up-regulated lysosomal activity. However, EV cell source-specific responses were observed at low doses, and these reflected the activities of the EV's source cells. Last, we assessed EV-derived transcript abundance and found that immune cell-derived EVs were most associated with recipient cells. Together, this study provides important insights into the cellular response to EVs.
Assessment of immunization data management practices in Cameroon: unveiling potential barriers to immunization data quality
Abstract Background One crucial obstacle to attaining universal immunization coverage in Sub-Saharan Africa is the paucity of timely and high-quality data. This challenge, in part, stems from the fact that many frontline immunization staff in this part of the world are commonly overburdened with multiple data-related responsibilities that often compete with their clinical tasks, which in turn could affect their data collection practices. This study assessed the data management practices of immunization staff and unveiled potential barriers impacting immunization data quality in Cameroon. Methods A descriptive cross-sectional study was conducted, involving health districts and health facilities in all 10 regions in Cameroon selected by a multi-stage sampling scheme. Structured questionnaires and observation checklists were used to collect data from Expanded Program of Immunization (EPI) staff, and data were analyzed using STATA VERSION 13.0 (StataCorp LP. 2015. College Station, TX). Results A total of 265 facilities in 68 health districts were assessed. There was limited availability of some data recording tools like vaccination cards (43%), maintenance registers (8%), and stock cards (57%) in most health facilities. Core data collection tools were incompletely filled in a significant proportion of facilities (37% for registers and 81% for tally sheets). Almost every health facility (89%) did not adhere to the recommendation of filling tally sheets during vaccination; the filling was instead done either before (51% of facilities) or after (25% of facilities) vaccinating several children. Moreso, about 8% of facilities did not collect data on vaccine administration. About a third of facilities did not collect data on stock levels (35%), vaccine storage temperatures (21%), and vaccine wastage (39%). Conclusion Our findings unveil important gaps in data collection practices at the facility level that could adversely affect Cameroon’s immunization data quality. It highlights the urgent need for systematic capacity building of frontline immunization staff on data management capacity, standardizing data management processes, and building systems that ensure constant availability of data recording tools at the facility level.
The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis.
BACKGROUND: Antimicrobial resistance (AMR) is an urgent global health challenge and a critical threat to modern health care. Quantifying its burden in the WHO Region of the Americas has been elusive-despite the region's long history of resistance surveillance. This study provides comprehensive estimates of AMR burden in the Americas to assess this growing health threat. METHODS: We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with AMR for 23 bacterial pathogens and 88 pathogen-drug combinations for countries in the WHO Region of the Americas in 2019. We obtained data from mortality registries, surveillance systems, hospital systems, systematic literature reviews, and other sources, and applied predictive statistical modelling to produce estimates of AMR burden for all countries in the Americas. Five broad components were the backbone of our approach: the number of deaths where infection had a role, the proportion of infectious deaths attributable to a given infectious syndrome, the proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of pathogens resistant to an antibiotic class, and the excess risk of mortality (or duration of an infection) associated with this resistance. We then used these components to estimate the disease burden by applying two counterfactual scenarios: deaths attributable to AMR (compared to an alternative scenario where resistant infections are replaced with susceptible ones), and deaths associated with AMR (compared to an alternative scenario where resistant infections would not occur at all). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. FINDINGS: We estimated 569,000 deaths (95% UI 406,000-771,000) associated with bacterial AMR and 141,000 deaths (99,900-196,000) attributable to bacterial AMR among the 35 countries in the WHO Region of the Americas in 2019. Lower respiratory and thorax infections, as a syndrome, were responsible for the largest fatal burden of AMR in the region, with 189,000 deaths (149,000-241,000) associated with resistance, followed by bloodstream infections (169,000 deaths [94,200-278,000]) and peritoneal/intra-abdominal infections (118,000 deaths [78,600-168,000]). The six leading pathogens (by order of number of deaths associated with resistance) were Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Together, these pathogens were responsible for 452,000 deaths (326,000-608,000) associated with AMR. Methicillin-resistant S. aureus predominated as the leading pathogen-drug combination in 34 countries for deaths attributable to AMR, while aminopenicillin-resistant E. coli was the leading pathogen-drug combination in 15 countries for deaths associated with AMR. INTERPRETATION: Given the burden across different countries, infectious syndromes, and pathogen-drug combinations, AMR represents a substantial health threat in the Americas. Countries with low access to antibiotics and basic health-care services often face the largest age-standardised mortality rates associated with and attributable to AMR in the region, implicating specific policy interventions. Evidence from this study can guide mitigation efforts that are tailored to the needs of each country in the region while informing decisions regarding funding and resource allocation. Multisectoral and joint cooperative efforts among countries will be a key to success in tackling AMR in the Americas. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.
Multicentre derivation and validation of a colitis-associated colorectal cancer risk prediction web tool.
OBJECTIVE: Patients with ulcerative colitis (UC) diagnosed with low-grade dysplasia (LGD) have increased risk of developing advanced neoplasia (AN: high-grade dysplasia or colorectal cancer). We aimed to develop and validate a predictor of AN risk in patients with UC with LGD and create a visual web tool to effectively communicate the risk. DESIGN: In our retrospective multicentre validated cohort study, adult patients with UC with an index diagnosis of LGD, identified from four UK centres between 2001 and 2019, were followed until progression to AN. In the discovery cohort (n=246), a multivariate risk prediction model was derived from clinicopathological features using Cox regression. Validation used data from three external centres (n=198). The validated model was embedded in a web tool to calculate patient-specific risk. RESULTS: Four clinicopathological variables were significantly associated with AN progression in the discovery cohort: endoscopically visible LGD >1 cm (HR 2.7; 95% CI 1.2 to 5.9), unresectable or incomplete endoscopic resection (HR 3.4; 95% CI 1.6 to 7.4), moderate/severe histological inflammation within 5 years of LGD diagnosis (HR 3.1; 95% CI 1.5 to 6.7) and multifocality (HR 2.9; 95% CI 1.3 to 6.2). In the validation cohort, this four-variable model accurately predicted future AN cases with overall calibration Observed/Expected=1.01 (95% CI 0.64 to 1.52), and achieved 100% specificity for the lowest risk group over 13 years of available follow-up. CONCLUSION: Multicohort validation confirms that patients with large, unresected, multifocal LGD and recent moderate/severe inflammation are at highest risk of developing AN. Personalised risk prediction provided via the Ulcerative Colitis-Cancer Risk Estimator ( www.UC-CaRE.uk ) can support treatment decision-making.
HLA-DP on Epithelial Cells Enables Tissue Damage by NKp44+ Natural Killer Cells in Ulcerative Colitis.
BACKGROUND & AIMS: Ulcerative colitis (UC) is characterized by severe inflammation and destruction of the intestinal epithelium, and associated with risk of single nucleotide polymorphism in HLA class II. Given the recently discovered interactions between subsets of HLA-DP molecules and the activating natural killer (NK) cell receptor NKp44, genetic associations of UC and HLA-DP haplotypes and their functional implications were investigated. METHODS: HLA-DP haplotype and UC risk association analyses were performed (UC: n = 13,927; control: n = 26,764). Expression levels of HLA-DP on intestinal epithelial cells (IECs) in individuals with and without UC were quantified. Human intestinal 3-dimensional (3D) organoid co-cultures with human NK cells were used to determine functional consequences of interactions between HLA-DP and NKp44. RESULTS: These studies identified HLA-DPA1∗01:03-DPB1∗04:01 (HLA-DP401) as a risk haplotype and HLA-DPA1∗01:03-DPB1∗03:01 (HLA-DP301) as a protective haplotype for UC in European populations. HLA-DP expression was significantly higher on IECs of individuals with UC compared with controls. IECs in human intestinal 3D organoids derived from HLA-DP401pos individuals showed significantly stronger binding of NKp44 compared with HLA-DP301pos IECs. HLA-DP401pos IECs in organoids triggered increased degranulation and tumor necrosis factor production by NKp44+ NK cells in cocultures, resulting in enhanced epithelial cell death compared with HLA-DP301pos organoids. Blocking of HLA-DP401-NKp44 interactions (anti-NKp44) abrogated NK cell activity in cocultures. CONCLUSIONS: We identified a UC risk HLA-DP haplotype that engages NKp44 and activates NKp44+ NK cells, mediating damage to intestinal epithelial cells in an HLA-DP haplotype-dependent manner. The molecular interaction between NKp44 and HLA-DP401 in UC can be targeted by therapeutic interventions to reduce NKp44+ NK cell-mediated destruction of the intestinal epithelium in UC.