Search results
Found 7017 matches for
Estimating pneumococcal carriage dynamics in adults living with HIV in a mature infant pneumococcal conjugate vaccine programme in Malawi, a modelling study.
BACKGROUND: Adults living with human immunodeficiency virus (ALWHIV) receiving antiretroviral therapy (ART) exhibit higher pneumococcal carriage prevalence than adults without HIV (HIV-). To assess factors influencing high pneumococcal carriage in ALWHIV, we estimated pneumococcal carriage acquisition and clearance rates in a high transmission and disease-burdened setting at least 10 years after introducing infant PCV13 in routine immunisation. METHODS: We collected longitudinal nasopharyngeal swabs from individuals aged 18-45 in Blantyre, Malawi. The study group included both HIV- individuals and those living with HIV, categorised based on ART duration as either exceeding 1 year (ART > 1y) or less than 3 months (ART 1y than HIV- adults (NVT [1.43]). Moreover, ALWHIV on ART > 1y cleared pneumococci slower than HIV- adults ([0.65]). Residual VT 19F and 3 were highly acquired, although NVT remained dominant. CONCLUSIONS: The disproportionately high point prevalence of pneumococcal carriage in ALWHIV on ART > 1y is likely due to impaired nasopharyngeal clearance, which results in prolonged carriage. Our findings provide baseline estimates for comparing pneumococcal carriage dynamics after implementing new PCV strategies in ALWHIV.
Parents in Neonatal Pain Management-An International Survey of Parent-Delivered Interventions and Parental Pain Assessment.
BACKGROUND: While parent-delivered pain management has been demonstrated to effectively reduce neonatal procedural pain responses, little is known about to what extent it is utilized. Our aim was to explore the utilization of parents in neonatal pain management and investigate whether local guidelines promote parent-delivered interventions. METHODS: A web-based survey was distributed to neonatal units worldwide. RESULTS: The majority of the 303 responding neonatal intensive care units (NICUs) from 44 countries were situated in high-income countries from Europe and Central Asia. Of the responding units, 67% had local guidelines about neonatal pain management, and of these, 40% answered that parental involvement was recommended, 27% answered that the role of parents in pain management was mentioned as optional, and 32% responded that it was not mentioned in the guidelines. According to the free-text responses, parent-delivered interventions of skin-to-skin contact, breastfeeding, and parental live singing were the most frequently performed in the NICUs. Of the responding units, 65% answered that parents performed some form of pain management regularly or always. CONCLUSIONS: There appears to be some practice uptake of parent-delivered pain management to reduce neonatal pain in high-income countries. Additional incorporation of these interventions into NICU pain guidelines is needed, as well as a better understanding of the use of parent-delivered pain management in low- and middle-income countries.
A novel whole blood assay to quantify the release of T cell associated cytokines in response to Bordetella pertussis antigens.
BACKGROUND: Bordetella pertussis continues to cause whooping cough globally even in countries with high immunisation coverage. Booster vaccinations with acellular pertussis vaccines are thus used in children, adolescents, and adults. T cell immunity is crucial for orchestrating the immune response after vaccination. However, T cell assays can be expensive and difficult to implement in large clinical trials. In this study, a whole blood (WB) stimulation assay was developed to identify secreted T cell associated cytokines in different age groups after acellular pertussis booster vaccination. MATERIAL AND METHODS: Longitudinal WB samples were collected from a small set of subjects (n = 38) aged 7-70 years participating in a larger ongoing clinical trial. For assay development, samples were diluted and incubated with purified inactivated pertussis toxin (PT), filamentous haemagglutinin (FHA), inactivated B. pertussis lysate, and complete medium (M) as stimulating conditions, with anti-CD28 and anti-CD49d as co-stimulants. Different timepoints around the vaccination (D0, D7, D14, D28), WB dilution factor (1:2, 1:4) and incubation time (24 h, 48 h, 72 h) were compared. Responses to 15 cytokines were tested with Luminex/multiplex immunoassay. RESULTS: The optimized assay consisted of WB incubation with M, PT, and FHA (including the two co-stimulants). After 48 h incubation, supernatants were collected for measurement of seven selected T cell associated cytokines (IL-2, IL-5, IL-10, IL-13, IL-17 A, IL-17F, and IFN-y) from samples before and 28 days after vaccination. PT stimulation showed a trend for upregulation of IL-2, IL-13, and IL-17 A/F for adult subjects, whereas the responses of all cytokines were downregulated for the paediatric subjects. Furthermore, PT and FHA-stimulated WB showed diverse cytokine producing profiles. CONCLUSIONS: The developed WB-based cytokine assay was shown to be less costly, easy to perform, and functional in differently aged individuals. Further, it requires only a small amount of fresh blood, which is beneficial especially for studies including infants. Our results support the use of this assay for other immunological studies in the future.
Biallelic PI4KA Mutations Disrupt B-Cell Metabolism and Cause B-Cell Lymphopenia and Hypogammaglobulinemia.
PURPOSE: PI4KA-related disorder is a highly clinically variable condition characterized by neurological (limb spasticity, developmental delay, intellectual disability, seizures, ataxia, nystagmus) and gastrointestinal (inflammatory bowel disease and multiple intestinal atresia) manifestations. Although features consistent with immunodeficiency (autoimmunity/autoinflammation and recurrent infections) have been reported in a subset of patients, the burden of B-cell deficiency and hypogammaglobulinemia has not been extensively investigated. We sought to describe the clinical presentation and manifestations of patients with PI4KA-related disorder and to investigate the metabolic consequences of biallelic PI4KA variants in B cells. METHODS: Clinical data from patients with PI4KA variants were obtained. Multi-omics analyses combining transcriptome, proteome, lipidome and metabolome analyses in conjunction with functional assays were performed in EBV-transformed B cells. RESULTS: Clinical and laboratory data of 13 patients were collected. Recurrent infections (7/13), autoimmune/autoinflammatory manifestations (5/13), B-cell deficiency (8/13) and hypogammaglobulinemia (8/13) were frequently observed. Patients' B cells frequently showed increased transitional and decreased switched memory B-cell subsets. Pathway analyses based on differentially expressed transcripts and proteins confirmed the central role of PI4KA in B cell differentiation with altered B-cell receptor (BCR) complex and signalling. By altering lipids production and tricarboxylic acid cycle regulation, and causing increased endoplasmic reticulum stress, biallelic PI4KA mutations disrupt B cell metabolism inducing mitochondrial dysfunction. As a result, B cells show hyperactive PI3K/mTOR pathway, increased autophagy and deranged cytoskeleton organization. CONCLUSION: By altering lipid metabolism and TCA cycle, impairing mitochondrial activity, hyperactivating mTOR pathway and increasing autophagy, PI4KA-related disorder causes a syndromic inborn error of immunity presenting with B-cell deficiency and hypogammaglobulinemia.
Role of circulating T follicular helper subsets following Ty21a immunization and oral challenge with wild type S. Typhi in humans.
Despite decades of intense research, our understanding of the correlates of protection against Salmonella Typhi (S. Typhi) infection and disease remains incomplete. T follicular helper cells (TFH), an important link between cellular and humoral immunity, play an important role in the development and production of high affinity antibodies. While traditional TFH cells reside in germinal centers, circulating TFH (cTFH) (a memory subset of TFH) are present in blood. We used specimens from a typhoid controlled human infection model whereby participants were immunized with Ty21a live attenuated S. Typhi vaccine and then challenged with virulent S. Typhi. Some participants developed typhoid disease (TD) and some did not (NoTD), which allowed us to assess the association of cTFH subsets in the development and prevention of typhoid disease. Of note, the frequencies of cTFH were higher in NoTD than in TD participants, particularly 7 days after challenge. Furthermore, the frequencies of cTFH2 and cTFH17, but not cTFH1 subsets were higher in NoTD than TD participants. However, we observed that ex-vivo expression of activation and homing markers were higher in TD than in NoTD participants, particularly after challenge. Moreover, cTFH subsets produced higher levels of S. Typhi-specific responses (cytokines/chemokines) in both the immunization and challenge phases. Interestingly, unsupervised analysis revealed unique clusters with distinct signatures for each cTFH subset that may play a role in either the development or prevention of typhoid disease. Importantly, we observed associations between frequencies of defined cTFH subsets and anti-S. Typhi antibodies. Taken together, our results suggest that circulating TFH2 and TFH17 subsets might play an important role in the development or prevention of typhoid disease. The contribution of these clusters was found to be distinct in the immunization and/or challenge phases. These results have important implications for vaccines aimed at inducing long-lived protective T cell and antibody responses.
Nr2f1 enhancers have distinct functions in controlling Nr2f1 expression during cortical development.
There is evidence that transcription factor (TF) encoding genes, which temporally control development in multiple cell types, can have tens of enhancers that regulate their expression. The NR2F1 TF developmentally promotes caudal and ventral cortical regional fates. Here, we epigenomically compared the activity of Nr2f1's enhancers during mouse cortical development with their activity in a transgenic assay. We identified at least six that are likely to be important in prenatal cortical development, with three harboring de novo mutants identified in ASD individuals. We chose to study the function of two of the most robust enhancers by deleting them singly or together. We found that they have distinct and overlapping functions in driving Nr2f1's regional and laminar expression in the developing cortex. Thus, these two enhancers, probably in combination with the others that we defined epigenetically, precisely tune Nr2f1's regional, cell type, and temporal expression during corticogenesis.
Longitudinal profile of antibody response to SARS-CoV-2 in patients with COVID-19 in a setting from Sub-Saharan Africa: A prospective longitudinal study.
BACKGROUND: Serological testing for SARS-CoV-2 plays an important role for epidemiological studies, in aiding the diagnosis of COVID-19, and assess vaccine responses. Little is known on dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. METHODS: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune-assays (LFIAs), and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. RESULTS: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increases in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly to 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested, within a median time of 11 (IQR: 9-15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6-11) vs. 15 (IQR: 13-21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibody at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. CONCLUSIONS: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of seroassays before implementation. Factors associated with failure to seroconvert needs further research.
Immune Responses to the Sexual Stages of Plasmodium falciparum Parasites.
Malaria infections remain a serious global health problem in the world, particularly among children and pregnant women in Sub-Saharan Africa. Moreover, malaria control and elimination is hampered by rapid development of resistance by the parasite and the vector to commonly used antimalarial drugs and insecticides, respectively. Therefore, vaccine-based strategies are sorely needed, including those designed to interrupt disease transmission. However, a prerequisite for such a vaccine strategy is the understanding of both the human and vector immune responses to parasite developmental stages involved in parasite transmission in both man and mosquito. Here, we review the naturally acquired humoral and cellular responses to sexual stages of the parasite while in the human host and the Anopheles vector. In addition, updates on current anti-gametocyte, anti-gamete, and anti-mosquito transmission blocking vaccines are given. We conclude with our views on some important future directions of research into P. falciparum sexual stage immunity relevant to the search for the most appropriate transmission-blocking vaccine.
Proportions of circulating follicular helper T cells are reduced and correlate with memory B cells in HIV-infected children.
INTRODUCTION: HIV causes defects in memory B cells in children, but the mechanisms of those defects have not been fully elucidated. One possible mechanism is the lack of T-cell help to B cells during immune reactions. However, few studies have assessed the effect of HIV on follicular helper T cells (TFH cells) in children. METHODS: In this study, follicular-homing CD4 T cells and memory B cells were assessed in HIV-infected children and compared with children from the community. CXCR5 and CD45RO were used as markers of follicular-homing T cells and memory T cells, respectively. Memory TFH cells were identified as CD3+CD8-CD4+CXCR5+CD45RO+PD1+. Central memory T cells were identified based on CCR7 expression. Relationship between the proportions of follicular-homing CD4 T cells and memory B cells were determined in multivariable regression models. RESULTS: Highly viremic HIV-infected children had lower proportions of memory TFH cells when compared with community control children. In multivariable analyses, high proportions of memory TFH cells were associated with increased percentages of resting memory B cells after adjusting for other covariates. CONCLUSION: The impact of HIV on follicular helper T cells could influence the accumulation of memory B cells in HIV-infected children.
Altered Memory T-Cell Responses to Bacillus Calmette-Guerin and Tetanus Toxoid Vaccination and Altered Cytokine Responses to Polyclonal Stimulation in HIV-Exposed Uninfected Kenyan Infants.
Implementation of successful prevention of mother-to-child transmission of HIV strategies has resulted in an increased population of HIV-exposed uninfected (HEU) infants. HEU infants have higher rates of morbidity and mortality than HIV-unexposed (HU) infants. Numerous factors may contribute to poor health in HEU infants including immunological alterations. The present study assessed T-cell phenotype and function in HEU infants with a focus on memory Th1 responses to vaccination. We compared cross-sectionally selected parameters at 3 and 12 months of age in HIV-exposed (n = 42) and HU (n = 28) Kenyan infants. We measured ex vivo activated and bulk memory CD4 and CD8 T-cells and regulatory T-cells by flow cytometry. In addition, we measured the magnitude, quality and memory phenotype of antigen-specific T-cell responses to Bacillus Calmette-Guerin and Tetanus Toxoid vaccine antigens, and the magnitude and quality of the T cell response following polyclonal stimulation with staphylococcal enterotoxin B. Finally, the influence of maternal disease markers on the immunological parameters measured was assessed in HEU infants. Few perturbations were detected in ex vivo T-cell subsets, though amongst HEU infants maternal HIV viral load positively correlated with CD8 T cell immune activation at 12 months. Conversely, we observed age-dependent differences in the magnitude and polyfunctionality of IL-2 and TNF-α responses to vaccine antigens particularly in Th1 cells. These changes mirrored those seen following polyclonal stimulation, where at 3 months, cytokine responses were higher in HEU infants compared to HU infants, and at 12 months, HEU infant cytokine responses were consistently lower than those seen in HU infants. Finally, reduced effector memory Th1 responses to vaccine antigens were observed in HEU infants at 3 and 12 months and higher central memory Th1 responses to M. tuberculosis antigens were observed at 3 months only. Long-term monitoring of vaccine efficacy and T-cell immunity in this vulnerable population is warranted.
Phenotypic and functional profiling of CD4 T cell compartment in distinct populations of healthy adults with different antigenic exposure.
BACKGROUND: Multiparameter flow cytometry has revealed extensive phenotypic and functional heterogeneity of CD4 T cell responses in mice and humans, emphasizing the importance of assessing multiple aspects of the immune response in correlation with infection or vaccination outcome. The aim of this study was to establish and validate reliable and feasible flow cytometry assays, which will allow us to characterize CD4 T cell population in humans in field studies more fully. METHODOLOGY/PRINCIPAL FINDINGS: We developed polychromatic flow cytometry antibody panels for immunophenotyping the major CD4 T cell subsets as well as broadly characterizing the functional profiles of the CD4 T cells in peripheral blood. We then validated these assays by conducting a pilot study comparing CD4 T cell responses in distinct populations of healthy adults living in either rural or urban Kenya. This study revealed that the expression profile of CD4 T cell activation and memory markers differed significantly between African and European donors but was similar amongst African individuals from either rural or urban areas. Adults from rural Kenya had, however, higher frequencies and greater polyfunctionality among cytokine producing CD4 T cells compared to both urban populations, particularly for "Th1" type of response. Finally, endemic exposure to malaria in rural Kenya may have influenced the expansion of few discrete CD4 T cell populations with specific functional signatures. CONCLUSION/SIGNIFICANCE: These findings suggest that environmentally driven T cell activation does not drive the dysfunction of CD4 T cells but is rather associated with greater magnitude and quality of CD4 T cell response, indicating that the level or type of microbial exposure and antigenic experience may influence and shape the functionality of CD4 T cell compartment. Our data confirm that it is possible and mandatory to assess multiple functional attributes of CD4 T cell response in the context of infection.
Safety and immunogenicity of heterologous prime-boost immunisation with Plasmodium falciparum malaria candidate vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in healthy Gambian and Kenyan adults.
BACKGROUND: Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). METHODOLOGY: We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. RESULTS: ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). CONCLUSIONS: ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. TRIAL REGISTRATION: Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430.
T-cell responses to the DBLα-tag, a short semi-conserved region of the Plasmodium falciparum membrane erythrocyte protein 1.
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant surface antigen expressed on mature forms of infected erythrocytes. It is considered an important target of naturally acquired immunity. Despite its extreme sequence heterogeneity, variants of PfEMP1 can be stratified into distinct groups. Group A PfEMP1 have been independently associated with low host immunity and severe disease in several studies and are now of potential interest as vaccine candidates. Although antigen-specific antibodies are considered the main effector mechanism in immunity to malaria, the induction of efficient and long-lasting antibody responses requires CD4+ T-cell help. To date, very little is known about CD4+ T-cell responses to PfEMP1 expressed on clinical isolates. The DBLα-tag is a small region from the DBLα-domain of PfEMP1 that can be amplified with universal primers and is accessible in clinical parasite isolates. We identified the dominant expressed PfEMP1 in 41 individual clinical parasite isolates and expressed the corresponding DBLα-tag as recombinant antigen. Individual DBLα-tags were then used to activate CD4+ T-cells from acute and convalescent blood samples in children who were infected with the respective clinical parasite isolate. Here we show that CD4+ T-cell responses to the homologous DBLα-tag were induced in almost all children during acute malaria and maintained in some for 4 months. Children infected with parasites that dominantly expressed group A-like PfEMP1 were more likely to maintain antigen-specific IFNγ-producing CD4+ T-cells than children infected with parasites dominantly expressing other PfEMP1. These results suggest that group A-like PfEMP1 may induce long-lasting effector memory T-cells that might be able to provide rapid help to variant-specific B cells. Furthermore, a number of children induced CD4+ T-cell responses to heterologous DBLα-tags, suggesting that CD4+ T-cells may recognise shared epitopes between several DBLα-tags.
Antigen presentation and dendritic cell biology in malaria.
Dendritic cells (DCs) are important both in amplifying the innate immune response and in initiating adaptive immunity and shaping the type of T helper (Th) response. Although the role of DCs in immune responses to many intracellular pathogens has been delineated and research is underway to identify the mechanisms involved, relatively little is known concerning the role of DCs in immunity to malaria. In this review, we provide an overview and summary of previous and current studies aimed to investigate the role of DCs as antigen presenting cells (APCs). In addition, the role of DCs in inducing innate and adaptive immunity to blood-stage malaria is discussed and, where information is available, the mechanisms involved are presented. Data from studies in humans infected with Plasmodium falciparum, the major human parasite responsible for the high morbidity and mortality associated with malaria throughout many regions of the developing world, as well as data from experimental mouse models are presented. Overall, the data from these studies are conflicting. The possible reasons for these differences, including the use of different parasite species and parasite strains in the mouse studies, are discussed. Nevertheless, together the data have important implications for development of an effective malaria vaccine since the selection of appropriate Plasmodium antigens and/or adjuvants, targeting innate immune responses involving DCs, may provide optimal protection against malaria. It is hoped that this review promotes more investigation among malariologists and immunologists alike on DCs and malaria.
Malaria pigment paralyzes dendritic cells.
The capacity of malarial infection to suppress the patient's immune responses both to the parasite and to other antigens has long puzzled researchers. A prime suspect, the parasite-produced pigment hemozoin, has now been clearly shown to mediate immunosuppression by inhibiting dendritic cell activity.
Regulation of immune response by Plasmodium-infected red blood cells.
During the asexual blood stage infection of the human malaria parasite, Plasmodium falciparum, parasite-derived proteins are inserted onto the surface of the host red blood cell membrane. These proteins are highly variable and were originally thought only to mediate antigenic variation, and sequestration of parasites from peripheral circulation, thus enabling immune evasion. Recent studies have revealed that PfEMP-1 and other molecules on the P. falciparum-infected red blood cell (PfRBC) activate and modulate the immune response. In this review, we discuss how PfRBCs interact with antigen-presenting cells (APCs) and other cells of the immune system, and how such interactions could modulate the host response to Plasmodium infections.