Search results
Found 6985 matches for
Surface display of functional moieties on extracellular vesicles using lipid anchors.
Extracellular vesicles (EVs) are efficient natural vehicles for intercellular communication and are under extensive investigation for the delivery of diverse therapeutics including small molecule drugs, nucleic acids, and proteins. To understand the mechanisms behind the biological activities of EVs and develop EV therapeutics, it's fundamental to track EVs and engineer EVs in a customized manner. In this study, we identified, using single-vesicle flow cytometry and microscopy, the lipid DOPE (dioleoyl phosphatidyl ethanolamine) as an efficient anchor for isolated EVs. Notably, DOPE associated with EVs quickly, and the products remained stable under several challenging conditions. Moreover, conjugating fluorophores, receptor-targeting peptides or albumin-binding molecules with DOPE enabled tracking the cellular uptake, enhanceing the cellular uptake or extending the circulation time in mice of engineered EVs , respectively. Taken together, this study reports an efficient lipid anchor for exogenous engineering of EVs and further showcases its versatility for the functionalization of EVs.
Serological cross-reactivity between Crimean-Congo haemorrhagic fever virus and Nairobi sheep disease virus glycoprotein C
Introduction: Crimean-Congo haemorrhagic fever virus (CCHFV) and Nairobi sheep disease virus (NSDV) are orthonairoviruses of concern, able to cause haemorragic fever disease in humans and sheep, respectively. CCHFV and NSDV cocirculating in small ruminant populations across South Asia and East Africa. Cross-reactivity to viruses of the Orthonairovirus genus can potentially interfere with serological assays when employed for serosurveillance in regions where two or more genus members overlap in their distribution. Methods: In this study, sheep sera sampled from a region of confirmed CCHFV circulation and NSDV absence were utilized, thereby eliminating the possibility of co-exposure. Field sera were tested against in-house anti-NSDV ELISAs specific to the nucleoprotein (NSDV NP) and glycoprotein C (NSDV Gc) antigens as well as an in-house NSDV 80% plaque reduction neutralization test (PRNT80). We assessed whether there is a correlation between CCHFV- and NSDV-specific ELISAs. Furthermore, epitopes-derived from CCHFV antigens for sheep antibody that were available from the literature were analyzed. Results: When comparing NSDV antigen-specific antibody responses against previously tested CCHFV antigen-specific antibody responses, a strong positive correlation was observed between the Gc-specific responses, while a weak positive correlation was observed between the NP-specific responses. Consequently, NP-specific ELISAs have a higher assay specificity compared to Gc-specific ELISAs, making them more suitable for serosurveillance in regions where multiple orthonairoviruses co-circulate. Crucially, only one seropositive sample to NSDV Gc-specific out of a set of 224 (0.4%) showed a neutralizing capacity at the lowest serum dilution (1:8), suggesting these field sera have not been exposed to NSDV. Based on an analysis of known epitopes in NP targeted by antibodies in sheep serum, we propose that NP is less cross-reactive because dominant epitopes are highly dissimilar between CCHFV and NSDV. Discussion: Gc exhibited a strong cross-reaction while the NP was weakly cross-reactive due to dominant epitopes being highly dissimilar between CCHFV and NSDV. Our in-house PRNT80 assay can could be used as a confirmatory test in regions where CCHFV and NSDV circulate.
Effectiveness and Safety of Adalimumab in Patients With Very Early-Onset Inflammatory Bowel Disease: A Retrospective Study on Behalf of the Porto Inflammatory Bowel Disease Working Group of European Society for Pediatric Gastroenterology Hepatology and Nutrition.
BACKGROUND AND AIMS: Patients with very early-onset inflammatory bowel disease (VEO-IBD), with an age of onset
Short-chain fatty acids: linking diet, the microbiome and immunity.
The short-chain fatty acids (SCFAs) butyrate, propionate and acetate are microbial metabolites and their availability in the gut and other organs is determined by environmental factors, such as diet and use of antibiotics, that shape the diversity and metabolism of the microbiota. SCFAs regulate epithelial barrier function as well as mucosal and systemic immunity via evolutionary conserved processes that involve G protein-coupled receptor signalling or histone deacetylase activity. Indicatively, the anti-inflammatory role of butyrate is mediated through direct effects on the differentiation of intestinal epithelial cells, phagocytes, B cells and plasma cells, and regulatory and effector T cells. Intestinally derived SCFAs also directly and indirectly affect immunity at extra-intestinal sites, such as the liver, the lungs, the reproductive tract and the brain, and have been implicated in a range of disorders, including infections, intestinal inflammation, autoimmunity, food allergies, asthma and responses to cancer therapies. An ecological understanding of microbial communities and their interrelated metabolic states, as well as the engineering of butyrogenic bacteria may support SCFA-focused interventions for the prevention and treatment of immune-mediated diseases.
Past, present, and future of Phase 3 vaccine trial design: rethinking statistics for the 21st century.
Vaccines are crucial for protecting health globally; however, their widespread use relies on rigorous clinical development programmes. This includes Phase 3 randomized controlled trials (RCTs) to confirm their safety, immunogenicity, and efficacy. Traditionally, such trials used fixed designs with predetermined assumptions, lacking the flexibility to change during the trial or stop early due to overwhelming evidence of either efficacy or futility. Modern vaccine trials benefit from innovative approaches like adaptive designs, allowing for planned trial adaptations based on accumulating data. Here, we provide an overview of the evolution of Phase 3 vaccine trial design and statistical analysis methods from traditional to more innovative contemporary methods. This includes adaptive trial designs, which offer ethical advantages and enable early termination if indicated; Bayesian methods, which combine prior knowledge and observed trial data to increase efficiency and enhance result interpretation; modern statistical analysis methods, which enable more accurate and precise inferences; the estimand framework, which ensures the primary question of interest is addressed in a trial; novel approaches using machine learning methods to assess heterogeneity of treatment effects; and statistical advances in safety analysis to evaluate reactogenicity and clinical adverse events. We conclude with insights into the future direction of vaccine trials, aiming to inform clinicians and researchers about conventional and novel RCT design and analysis approaches to facilitate the conduct of efficient, timely trials.
An extracellular vesicle delivery platform based on the PTTG1IP protein.
Extracellular vesicles (EVs) are promising therapeutic delivery vehicles, although their potential is limited by a lack of efficient engineering strategies to enhance loading and functional cargo delivery. Using an in-house bioinformatics analysis, we identified N-glycosylation as a putative EV-sorting feature. PTTG1IP (a small, N-glycosylated, single-spanning transmembrane protein) was found to be a suitable scaffold for EV loading of therapeutic cargoes, with loading dependent on its N-glycosylation at two arginine residues. Chimeric proteins consisting of PTTG1IP fused with various cargo proteins, and separated by self-cleaving sequences (to promote cargo release), were shown to enable highly efficient functional delivery of Cre protein to recipient cell cultures and mouse xenograft tumors, and delivery of Cas9-sgRNA complexes to recipient reporter cells. The favorable membrane topology of PTTG1IP enabled facile engineering of further variants with improved properties, highlighting its versatility and potential as a platform for EV-based therapeutics.
Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading.
Extracellular vesicles (EVs) are gaining increasing attention for diagnostic and therapeutic applications in various diseases. These natural nanoparticles benefit from favorable safety profiles and unique biodistribution capabilities, rendering them attractive drug-delivery modalities over synthetic analogs. However, the widespread use of EVs is limited by technological shortcomings and biological knowledge gaps that fail to unravel their heterogeneity. An in-depth understanding of their biogenesis is crucial to unlocking their full therapeutic potential. Here, we explore how knowledge about EV biogenesis can be exploited for EV bioengineering to load therapeutic protein or nucleic acid cargos into or onto EVs. We summarize more than 75 articles and discuss their findings on the formation and composition of exosomes and microvesicles, revealing multiple pathways that may be stimulation and/or cargo dependent. Our analysis further identifies key regulators of natural EV cargo loading and we discuss how this knowledge is integrated to develop engineered EV biotherapeutics.
Tissue-specific modulation of CRISPR activity by miRNA-sensing guide RNAs.
Nucleic acid nanostructures offer unique opportunities for biomedical applications due to their sequence-programmable structures and functions, which enable the design of complex responses to molecular cues. Control of the biological activity of therapeutic cargoes based on endogenous molecular signatures holds the potential to overcome major hurdles in translational research: cell specificity and off-target effects. Endogenous microRNAs (miRNAs) can be used to profile cell type and cell state, and are ideal inputs for RNA nanodevices. Here, we present CRISPR MiRAGE (miRNA-activated genome editing), a tool comprising a dynamic single-guide RNA that senses miRNA complexed with Argonaute proteins and controls downstream CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) activity based on the detected miRNA signature. We study the operation of the miRNA-sensing single-guide RNA and attain muscle-specific activation of gene editing through CRISPR MiRAGE in models of Duchenne muscular dystrophy. By enabling RNA-controlled gene editing activity, this technology creates opportunities to advance tissue-specific CRISPR treatments for human diseases.
The Diagnostic Utility of Host RNA Biosignatures in Adult Patients With Sepsis: A Systematic Review and Meta-Analysis.
OBJECTIVES: Sepsis is a life-threatening medical emergency, with a profound healthcare burden globally. Its pathophysiology is complex, heterogeneous and temporally dynamic, making diagnosis challenging. Medical management is predicated on early diagnosis and timely intervention. Transcriptomics is one of the novel "-omics" technologies being evaluated for recognition of sepsis. Our objective was to evaluate the performance of host gene expression biosignatures for the diagnosis of all-cause sepsis in adults. DATA SOURCES: PubMed/Ovid Medline, Ovid Embase, and Cochrane databases from inception to June 2023. STUDY SELECTION: We included studies evaluating the performance of host gene expression biosignatures in adults who were diagnosed with sepsis using existing clinical definitions. Controls where applicable were patients without clinical sepsis. DATA EXTRACTION: Data including population demographics, sample size, study design, tissue specimen, type of transcriptome, health status of comparator group, and performance of transcriptomic biomarkers were independently extracted by at least two reviewers. DATA SYNTHESIS: Meta-analysis to describe the performance of host gene expression biosignatures for the diagnosis of sepsis in adult patients was performed using the random-effects model. Risk of bias was assessed according to the Quality Assessment of Diagnostic Accuracy Studies-2 tool. A total of 117 studies (n = 17,469), comprising 132 separate patient datasets, were included in our final analysis. Performance of transcriptomics for the diagnosis of sepsis against pooled controls showed area under the receiver operating characteristic curve (AUC, 0.86; 95% CI, 0.84-0.88). Studies using healthy controls showed AUC 0.87 (95% CI, 0.84-0.89), while studies using controls with systemic inflammatory response syndrome (SIRS) had AUC 0.84 (95% CI, 0.78-0.90). Transcripts with excellent discrimination against SIRS controls include UrSepsisModel, a 210 differentially expressed genes biosignature, microRNA-143, and Septicyte laboratory. CONCLUSIONS: Transcriptomics is a promising approach for the accurate diagnosis of sepsis in adults and demonstrates good discriminatory ability against both healthy and SIRS control subjects.
Wearable sensors in paediatric neurology.
Wearable sensors have the potential to transform diagnosis, monitoring, and management of children who have neurological conditions. Traditional methods for assessing neurological disorders rely on clinical scales and subjective measures. The snapshot of the disease progression at a particular time point, lack of cooperation by the children during assessments, and susceptibility to bias limit the utility of these measures. Wearable sensors, which capture data continuously in natural settings, offer a non-invasive and objective alternative to traditional methods. This review examines the role of wearable sensors in various paediatric neurological conditions, including cerebral palsy, epilepsy, autism spectrum disorder, attention-deficit/hyperactivity disorder, as well as Rett syndrome, Down syndrome, Angelman syndrome, Prader-Willi syndrome, neuromuscular disorders such as Duchenne muscular dystrophy and spinal muscular atrophy, ataxia, Gaucher disease, headaches, and sleep disorders. The review highlights their application in tracking motor function, seizure activity, and daily movement patterns to gain insights into disease progression and therapeutic response. Although challenges related to population size, compliance, ethics, and regulatory approval remain, wearable technology promises to improve clinical trials and outcomes for patients in paediatric neurology.
Local and systemic reactogenicity after mRNA and protein-based COVID-19 vaccines compared to meningococcal vaccine (MenACWY) in a UK blinded, randomized phase 2 trial (COV-BOOST).
Reactogenicity, the occurrence of vaccine side effects, can impact vaccine acceptance. There is limited data comparing the reactogenicity of COVID-19 vaccines to other routinely used vaccines, such as the meningococcal conjugate vaccine (MenACWY). In a trial of UK adults, participants received a third COVID-19 vaccine dose (NVX-CoV2373, BNT162b2, or mRNA1273) alongside MenACWY as an active control. Compared to MenACWY, we found that mRNA vaccines, particularly mRNA1273, showed the greatest relative increase in side effects, while protein-based NVX-CoV2373 generally elicited similar reactogenicity to MenACWY. These findings suggest that platform type can influence vaccine reactogenicity, and further research is needed to compare COVID-19 vaccines with other routinely administered vaccines.