Extracellular vesicles (EVs) are cell-derived, membranous nanoparticles that mediate intercellular communication by transferring biomolecules, including proteins and RNA, between cells. As a result of their suggested natural capability to functionally deliver RNA, EVs may be harnessed as therapeutic RNA carriers. One major limitation for their translation to therapeutic use is the lack of an efficient, robust, and scalable method to load EVs with RNA molecules of interest. Here, we evaluated and optimized methods to load EVs with cholesterol-conjugated small interfering RNAs (cc-siRNAs) by systematic evaluation of the influence of key parameters, including incubation time, volume, temperature, and EV:cc-siRNA ratio. EV loading under conditions that resulted in the highest siRNA retention percentage, incubating 15 molecules of cc-siRNA per EV at 37°C for 1 hr in 100 μL, facilitated concentration-dependent silencing of human antigen R (HuR), a therapeutic target in cancer, in EV-treated cells. These results may accelerate the development of EV-based therapeutics.
Journal article
Mol Ther
05/07/2017
25
1580 - 1587
RNA interference, delivery, exosomes, extracellular vesicles, siRNA, Animals, Base Sequence, Biological Transport, Cell Line, Cell Line, Tumor, Cholesterol, Drug Delivery Systems, ELAV-Like Protein 1, Extracellular Vesicles, Fibroblasts, Gene Expression, HEK293 Cells, Humans, Mice, Neoplasm Proteins, Neurons, Permeability, RNA, Small Interfering, Temperature