Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Malaria is caused by protozoan erythrocytic parasites of the Plasmodium genus, with Plasmodium falciparum being the most dangerous and widespread disease-causing species. Falcipain-2 (FP-2) of P. falciparum is a papain-family (C1A) cysteine protease that plays an important role in the parasite life cycle by degrading erythrocyte proteins, most notably hemoglobin. Inhibition of FP-2 and its paralogues prevents parasite maturation, suggesting these proteins may be valuable targets for the design of novel antimalarial drugs, but lack of structural knowledge has impeded progress toward the rational discovery of potent, selective, and efficacious inhibitors. As a first step toward this goal, we present here the crystal structure of mature FP-2 at 3.1 A resolution, revealing novel structural features of the FP-2 subfamily proteases including a dynamic beta-hairpin hemoglobin binding motif, a flexible N-terminal alpha-helical extension, and a unique active-site cleft. We also demonstrate by biochemical methods that mature FP-2 can proteolytically process its own precursor in trans at neutral to weakly alkaline pH, that the binding of hemoglobin to FP-2 is strictly pH-dependent, and that FP-2 preferentially binds methemoglobin over hemoglobin. Because the specificity and proteolytic activity of FP-2 toward its multiple targets appears to be pH-dependent, we suggest that environmental pH may play an important role in orchestrating FP-2 function over the different life stages of the parasite. Moreover, it appears that selectivity of FP-2 for methemoglobin may represent an evolutionary adaptation to oxidative stress conditions within the host cell.

Original publication

DOI

10.1074/jbc.M603776200

Type

Journal article

Journal

J Biol Chem

Publication Date

01/09/2006

Volume

281

Pages

25425 - 25437

Keywords

Amino Acid Motifs, Amino Acid Sequence, Animals, Binding Sites, Crystallography, X-Ray, Cysteine Endopeptidases, Hemoglobins, Methemoglobin, Models, Molecular, Molecular Sequence Data, Plasmodium falciparum, Protein Folding, Protein Structure, Tertiary, Sequence Homology, Amino Acid, Structure-Activity Relationship