Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Autism spectrum disorder (ASD) is a common, complex, and highly heritable condition with contributions from both common and rare genetic variations. While disruptive, rare variants in protein-coding regions clearly contribute to symptoms, the role of rare non-coding remains unclear. Variants in these regions, including promoters, can alter downstream RNA and protein quantity; however, the functional impacts of specific variants observed in ASD cohorts remain largely uncharacterized. Here, we analyzed 3600 de novo mutations in promoter regions previously identified by whole-genome sequencing of autistic probands and neurotypical siblings to test the hypothesis that mutations in cases have a greater functional impact than those in controls. We leveraged massively parallel reporter assays (MPRAs) to detect transcriptional consequences of these variants in neural progenitor cells and identified 165 functionally high confidence de novo variants (HcDNVs). While these HcDNVs are enriched for markers of active transcription, disruption to transcription factor binding sites, and open chromatin, we did not identify differences in functional impact based on ASD diagnostic status.

Original publication

DOI

10.3390/ijms24043509

Type

Journal article

Journal

International Journal of Molecular Sciences

Publisher

MDPI AG

Publication Date

09/02/2023

Volume

24

Pages

3509 - 3509