Extracellular vesicles (EVs) are biological nanoparticles with important roles in intercellular communication, and potential as drug delivery vehicles. Here we demonstrate a role for the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in EV assembly and secretion. We observe high levels of GAPDH binding to the outer surface of EVs via a phosphatidylserine binding motif (G58), which promotes extensive EV clustering. Further studies in a Drosophila EV biogenesis model reveal that GAPDH is required for the normal generation of intraluminal vesicles in endosomal compartments, and promotes vesicle clustering. Fusion of the GAPDH-derived G58 peptide to dsRNA-binding motifs enables highly efficient loading of small interfering RNA (siRNA) onto the EV surface. Such vesicles efficiently deliver siRNA to multiple anatomical regions of the brain in a Huntington's disease mouse model after systemic injection, resulting in silencing of the huntingtin gene in different regions of the brain.
Journal article
Nat Commun
18/11/2021
12
Animals, Brain, Cell Line, Tumor, Disease Models, Animal, Drug Delivery Systems, Extracellular Vesicles, Glyceraldehyde-3-Phosphate Dehydrogenases, HEK293 Cells, HeLa Cells, Humans, Huntingtin Protein, Huntington Disease, Mesenchymal Stem Cells, Mice, Inbred C57BL, Phosphatidylserines, Protein Binding, RNA, Small Interfering