Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cancer stem cells can escape therapeutic killing by adopting a quiescent or dormant state. The reversibility of this condition provides the potential for later recurrence or relapse, potentially many years later. We describe the genomics of a rare case of childhood BCR-ABL1-positive, B-cell precursor acute lymphoblastic leukemia that relapsed, with an acute myeloblastic leukemia immunophenotype, 22 years after the initial diagnosis, sustained remission and presumed cure. The primary and relapsed leukemias shared the identical BCR-ABL1 fusion genomic sequence and two identical immunoglobulin gene rearrangements, indicating that the relapse was a derivative of the founding clone. All other mutational changes (single-nucleotide variant and copy number alterations) were distinct in diagnostic or relapse samples. These data provide unambiguous evidence that leukemia-propagating cells, most probably pre-leukemic stem cells, can remain covert and silent but potentially reactivatable for more than two decades.

Original publication

DOI

10.1038/leu.2015.132

Type

Journal article

Journal

Leukemia

Publication Date

11/2015

Volume

29

Pages

2202 - 2207

Keywords

Child, Preschool, Exome, Fusion Proteins, bcr-abl, Gene Dosage, Gene Rearrangement, Genes, Immunoglobulin, Humans, Ikaros Transcription Factor, Male, Neoplastic Stem Cells, Precursor B-Cell Lymphoblastic Leukemia-Lymphoma