Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

FMRI has revealed the presence of correlated low-frequency cerebro-vascular oscillations within functional brain systems, which are thought to reflect an intrinsic feature of large-scale neural activity. The spatial correlations shown by these fluctuations has been their identifying feature, distinguishing them from fluctuations associated with other processes. Major analysis methods characterize these correlations, identifying networks and their interactions with various factors. However, other analysis approaches are required to fully characterize the regional signal dynamics contributing to these correlations between regions. In this study we show that analysis of the power spectral density (PSD) of regional signals can identify changes in oscillatory dynamics across conditions, and is able to characterize the nature and spatial extent of signal changes underlying changes in measures of connectivity. We analyzed spectral density changes in sessions consisting of both resting-state scans and scans recording 2 min blocks of continuous unilateral finger tapping and rest. We assessed the relationship of PSD and connectivity measures by additionally tracking correlations between selected motor regions. Spectral density gradually increased in gray and white matter during the experiment. Finger tapping produced widespread decreases in low-frequency spectral density. This change was symmetric across the cortex, and extended beyond both the lateralized task-related signal increases, and the established "resting-state" motor network. Correlations between motor regions also reduced with task performance. In conclusion, analysis of PSD is a sensitive method for detecting and characterizing BOLD signal oscillations that can enhance the analysis of network connectivity.

Original publication

DOI

10.1002/hbm.20601

Type

Journal article

Journal

Hum Brain Mapp

Publication Date

07/2008

Volume

29

Pages

778 - 790

Keywords

Adolescent, Adult, Brain, Brain Mapping, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Nerve Net